Self-Supervision via Controlled Transformation and Unpaired Self-Conditioning for Low-Light Image Enhancement

转化(遗传学) 图像增强 条件作用 图像(数学) 计算机科学 计算机视觉 人工智能 数学 化学 生物化学 统计 基因
作者
Aupendu Kar,Sobhan Kanti Dhara,Debashis Sen,Prabir Kumar Biswas
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2024.3370779
摘要

Real-world low-light images captured by imaging devices suffer from poor visibility and require a domain-specific enhancement to produce artifact-free outputs that reveal details. However, it is usually challenging to create large-scale paired real-world low-light image datasets for training enhancement approaches. When trained with limited data, most supervised approaches do not perform well in generalizing to a wide variety of real-world images. In this paper, we propose an unpaired low-light image enhancement network leveraging novel controlled transformation-based self-supervision and unpaired self-conditioning strategies. The model determines the required degrees of enhancement at the input image pixels, which are learned from the unpaired low-lit and well-lit images without any direct supervision. The self-supervision is based on a controlled transformation of the input image and subsequent maintenance of its enhancement in spite of the transformation. The self-conditioning performs training of the model on unpaired images such that it does not enhance an already-enhanced image or a well-lit input image. The inherent noise in the input low-light images is handled by employing low gradient magnitude suppression in a detail-preserving manner. In addition, our noise handling is self-conditioned by preventing the denoising of noise-free well-lit images. The training based on low-light image enhancement-specific attributes allows our model to avoid paired supervision without compromising significantly in performance. While our proposed self-supervision aids consistent enhancement, our novel self-conditioning facilitates adequate enhancement. Extensive experiments on multiple standard datasets demonstrate that our model, in general, outperforms the state-of-the-art both quantitatively and subjectively. Ablation studies show the effectiveness of our self-supervision and self-conditioning strategies, and the related loss functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄的南烟完成签到,获得积分10
刚刚
desperado发布了新的文献求助10
刚刚
陈志刚完成签到,获得积分10
刚刚
正在发布了新的文献求助10
刚刚
依牧完成签到,获得积分10
刚刚
范特西完成签到 ,获得积分10
1秒前
1秒前
368DFS发布了新的文献求助10
2秒前
aerosol完成签到,获得积分10
2秒前
甜蜜黄蜂发布了新的文献求助10
2秒前
xinyue发布了新的文献求助10
2秒前
3秒前
123发布了新的文献求助10
4秒前
刘鑫发布了新的文献求助10
4秒前
Y不吃香菜完成签到,获得积分10
4秒前
小伍同学发布了新的文献求助10
4秒前
星辰大海应助平淡的初翠采纳,获得10
4秒前
1111发布了新的文献求助10
4秒前
4秒前
5秒前
小陈完成签到,获得积分20
5秒前
5秒前
共享精神应助刀光凛凛采纳,获得10
6秒前
大模型应助松谦采纳,获得50
6秒前
艾玛发布了新的文献求助30
6秒前
6秒前
善学以致用应助外向的匕采纳,获得10
6秒前
7秒前
7秒前
8秒前
8秒前
www完成签到,获得积分20
8秒前
Jackhai发布了新的文献求助30
9秒前
GDD完成签到,获得积分10
9秒前
范特西关注了科研通微信公众号
9秒前
橘子味汽水完成签到 ,获得积分10
9秒前
10秒前
雪域发布了新的文献求助10
10秒前
赘婿应助文天采纳,获得10
10秒前
可可发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781