A Survey on Model-Based, Heuristic, and Machine Learning Optimization Approaches in RIS-Aided Wireless Networks

计算机科学 启发式 稳健性(进化) 机器学习 人工智能 最大化 最优化问题 缩小 数学优化 算法 数学 生物化学 基因 化学 程序设计语言
作者
Hao Zhou,Melike Erol‐Kantarci,Yuanwei Liu,H. Vincent Poor
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 781-823 被引量:91
标识
DOI:10.1109/comst.2023.3340099
摘要

Reconfigurable intelligent surfaces (RISs) have received considerable attention as a key enabler for envisioned 6G networks, for the purpose of improving the network capacity, coverage, efficiency, and security with low energy consumption and low hardware cost. However, integrating RISs into the existing infrastructure greatly increases the network management complexity, especially for controlling a significant number of RIS elements. To realize the full potential of RISs, efficient optimization approaches are of great importance. This work provides a comprehensive survey of optimization techniques for RIS-aided wireless communications, including model-based, heuristic, and machine learning (ML) algorithms. In particular, we first summarize the problem formulations in the literature with diverse objectives and constraints, e.g., sumrate maximization, power minimization, and imperfect channel state information constraints. Then, we introduce model-based algorithms that have been used in the literature, such as alternating optimization, the majorization-minimization method, and successive convex approximation. Next, heuristic optimization is discussed, which applies heuristic rules for obtaining lowcomplexity solutions. Moreover, we present state-of-the-art ML algorithms and applications towards RISs, i.e., supervised and unsupervised learning, reinforcement learning, federated learning, graph learning, transfer learning, and hierarchical learning-based approaches. Model-based, heuristic, and ML approaches are compared in terms of stability, robustness, optimality and so on, providing a systematic understanding of these techniques. Finally, we highlight RIS-aided applications towards 6G networks and identify future challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
Hello应助shirelylee采纳,获得10
1秒前
鳗鱼依白完成签到,获得积分20
3秒前
3秒前
哈哈哈关注了科研通微信公众号
4秒前
哈哈哈关注了科研通微信公众号
4秒前
寒水完成签到 ,获得积分10
5秒前
小北发布了新的文献求助10
5秒前
5秒前
weiyu_u发布了新的文献求助30
6秒前
6秒前
SUNstp完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
科研顺利发布了新的文献求助10
7秒前
hhh发布了新的文献求助10
7秒前
欧阳半仙完成签到,获得积分10
8秒前
OWEN完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
11发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
ding应助李旭采纳,获得10
9秒前
9秒前
兴奋冬萱发布了新的文献求助10
9秒前
9秒前
轨迹应助long采纳,获得50
10秒前
轨迹应助张张采纳,获得10
10秒前
lf发布了新的文献求助10
10秒前
桐桐应助自由的尔蓉采纳,获得10
11秒前
AN发布了新的文献求助10
11秒前
鲤鱼完成签到,获得积分10
11秒前
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784905
求助须知:如何正确求助?哪些是违规求助? 5684415
关于积分的说明 15465839
捐赠科研通 4913887
什么是DOI,文献DOI怎么找? 2644971
邀请新用户注册赠送积分活动 1592868
关于科研通互助平台的介绍 1547242