Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring

材料科学 纤维素 导电体 复合材料 拉伤 高分子科学 纳米技术 化学工程 医学 内科学 工程类
作者
Qing-Yue Ni,Xiao-Feng He,Zhou Jialin,Yu‐Qin Yang,Zi‐Fan Zeng,Peng-Fei Mao,Yu-Hang Luo,Jin-Meng Xu,Baiyu Jiang,Qiang Wu,Ben Wang,Yu‐Qing Qin,Li‐Xiu Gong,Long‐Cheng Tang,Shi‐Neng Li
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:191: 181-191 被引量:90
标识
DOI:10.1016/j.jmst.2023.12.048
摘要

For advanced conductive hydrogels, adaptable mechanical properties and high conductivity are essential requirements for practical application, e.g., soft electronic devices. Here, a straightforward strategy to develop a mechanically robust hydrogel with high conductivity by constructing complicated 3D structures composed of covalently cross-linked polymer network and two nanofillers with distinguishing dimensions is reported. The combination of one-dimensional quaternized cellulose nanofibrils (QACNF) and two-dimensional MXene nanosheets not only provides prominent and tunable mechanical properties modulated by materials composition, but results in electronically conductive path with high conductivity (1281 mS m–1). Owing to the uniform interconnectivity of network structure attributed to the strong macromolecular interaction and nano-reinforced effect, the resultant hydrogel exhibits a balanced mechanical feature, i.e., high tensile strength (449 kPa), remarkable stretchability (˃ 1700%), and ultra-high toughness (5.46 MJ m–3), outperforming those of virgin one. Additionally, the enhanced conductive characteristic with the aid of QACNF enables hydrogels with impressive electromechanical behavior, containing high sensitivity (maximum gauge factor: 2.24), wide working range (0–1465%), and fast response performance (response time: 141 ms, recover time: 140 ms). Benefiting from the excellent mechanical performance, a flexible strain sensor based on such conductive hydrogel can deliver an appealing sensing performance of monitoring multi-scale deformations, from large and monotonous mechanical deformation to tiny and complex physiological motions (e.g., joint movement and signature/vocal recognition). Together, the hydrogel material in this work opens up opportunities in the design and fabrication of advanced gel-based materials for emerging wearable electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小伊完成签到,获得积分10
2秒前
2秒前
2秒前
复杂的可乐完成签到 ,获得积分10
2秒前
阿姊完成签到 ,获得积分10
2秒前
iWanted完成签到,获得积分10
4秒前
请叫我盒子完成签到,获得积分10
4秒前
小杭76应助YZJing采纳,获得10
5秒前
6秒前
6秒前
wanci应助影子采纳,获得10
7秒前
范雅慧发布了新的文献求助10
8秒前
star发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
sylinmm完成签到,获得积分10
12秒前
完美世界应助粒子耶采纳,获得10
13秒前
浮游应助请叫我盒子采纳,获得10
13秒前
15秒前
16秒前
萧萧完成签到,获得积分10
17秒前
20秒前
tutulunzi完成签到,获得积分10
20秒前
FashionBoy应助威武弼采纳,获得10
20秒前
22秒前
Mental发布了新的文献求助10
22秒前
toniki完成签到,获得积分20
25秒前
粒子耶发布了新的文献求助10
26秒前
美好水池发布了新的文献求助10
27秒前
28秒前
29秒前
NiceSunnyDay完成签到 ,获得积分10
34秒前
bluecedar发布了新的文献求助40
34秒前
阡陌发布了新的文献求助10
34秒前
犹豫的踏歌应助流星雨采纳,获得10
35秒前
浮游应助toniki采纳,获得10
37秒前
40秒前
45秒前
大模型应助谢尔顿采纳,获得30
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 500
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4796590
求助须知:如何正确求助?哪些是违规求助? 4116858
关于积分的说明 12736069
捐赠科研通 3846672
什么是DOI,文献DOI怎么找? 2119774
邀请新用户注册赠送积分活动 1141896
关于科研通互助平台的介绍 1031410