Dual-domain strip attention for image restoration

计算机科学 去模糊 图像复原 人工智能 图像(数学) 计算机视觉 像素 模式识别(心理学) 图像处理
作者
Yuning Cui,Alois Knoll
出处
期刊:Neural Networks [Elsevier BV]
卷期号:171: 429-439 被引量:27
标识
DOI:10.1016/j.neunet.2023.12.003
摘要

Image restoration aims to reconstruct a latent high-quality image from a degraded observation. Recently, the usage of Transformer has significantly advanced the state-of-the-art performance of various image restoration tasks due to its powerful ability to model long-range dependencies. However, the quadratic complexity of self-attention hinders practical applications. Moreover, sufficiently leveraging the huge spectral disparity between clean and degraded image pairs can also be conducive to image restoration. In this paper, we develop a dual-domain strip attention mechanism for image restoration by enhancing representation learning, which consists of spatial and frequency strip attention units. Specifically, the spatial strip attention unit harvests the contextual information for each pixel from its adjacent locations in the same row or column under the guidance of the learned weights via a simple convolutional branch. In addition, the frequency strip attention unit refines features in the spectral domain via frequency separation and modulation, which is implemented by simple pooling techniques. Furthermore, we apply different strip sizes for enhancing multi-scale learning, which is beneficial for handling degradations of various sizes. By employing the dual-domain attention units in different directions, each pixel can implicitly perceive information from an expanded region. Taken together, the proposed dual-domain strip attention network (DSANet) achieves state-of-the-art performance on 12 different datasets for four image restoration tasks, including image dehazing, image desnowing, image denoising, and image defocus deblurring. The code and models are available at https://github.com/c-yn/DSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyz完成签到 ,获得积分10
刚刚
chessman完成签到,获得积分10
3秒前
于晨欣完成签到,获得积分10
4秒前
4秒前
kingwill应助科研通管家采纳,获得60
10秒前
科目三应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
山河发布了新的文献求助10
10秒前
SciGPT应助科研通管家采纳,获得100
10秒前
慕青应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
ZhiYi应助科研通管家采纳,获得30
10秒前
11秒前
11秒前
12秒前
苏苏完成签到,获得积分10
12秒前
15秒前
四月发布了新的文献求助30
16秒前
D_Daying发布了新的文献求助10
19秒前
东方欲晓完成签到 ,获得积分0
21秒前
四月完成签到,获得积分10
22秒前
三石完成签到 ,获得积分10
27秒前
lime完成签到,获得积分20
34秒前
852应助D_Daying采纳,获得10
40秒前
45秒前
45秒前
Arueliano发布了新的文献求助10
49秒前
pluto应助进退须臾采纳,获得20
53秒前
无奈的书琴完成签到 ,获得积分10
53秒前
mgg完成签到,获得积分10
58秒前
傻瓜完成签到 ,获得积分10
58秒前
材1完成签到 ,获得积分10
59秒前
爱撒娇的寒香完成签到 ,获得积分10
59秒前
1分钟前
chen完成签到,获得积分10
1分钟前
白斯特发布了新的文献求助10
1分钟前
mylaodao完成签到,获得积分0
1分钟前
海侠子完成签到,获得积分20
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776445
求助须知:如何正确求助?哪些是违规求助? 3321879
关于积分的说明 10208121
捐赠科研通 3037207
什么是DOI,文献DOI怎么找? 1666578
邀请新用户注册赠送积分活动 797579
科研通“疑难数据库(出版商)”最低求助积分说明 757872