Enhanced sleep staging with artificial intelligence: a validation study of new software for sleep scoring

多导睡眠图 脑电图 睡眠(系统调用) 睡眠阶段 置信区间 医学 眼电学 听力学 人工智能 计算机科学 物理医学与康复 内科学 操作系统 精神科
作者
Massimiliano Grassi,Silvia Daccò,Daniela Caldirola,Giampaolo Perna,Koen Schruers,Archie Defillo
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:6
标识
DOI:10.3389/frai.2023.1278593
摘要

Manual sleep staging (MSS) using polysomnography is a time-consuming task, requires significant training, and can lead to significant variability among scorers. STAGER is a software program based on machine learning algorithms that has been developed by Medibio Limited (Savage, MN, USA) to perform automatic sleep staging using only EEG signals from polysomnography. This study aimed to extensively investigate its agreement with MSS performed during clinical practice and by three additional expert sleep technicians. Forty consecutive polysomnographic recordings of patients referred to three US sleep clinics for sleep evaluation were retrospectively collected and analyzed. Three experienced technicians independently staged the recording using the electroencephalography, electromyography, and electrooculography signals according to the American Academy of Sleep Medicine guidelines. The staging initially performed during clinical practice was also considered. Several agreement statistics between the automatic sleep staging (ASS) and MSS, among the different MSSs, and their differences were calculated. Bootstrap resampling was used to calculate 95% confidence intervals and the statistical significance of the differences. STAGER's ASS was most comparable with, or statistically significantly better than the MSS, except for a partial reduction in the positive percent agreement in the wake stage. These promising results indicate that STAGER software can perform ASS of inpatient polysomnographic recordings accurately in comparison with MSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁鹏笑完成签到 ,获得积分0
刚刚
1秒前
陈小陈完成签到,获得积分10
4秒前
6秒前
7秒前
dengcl-jack完成签到,获得积分10
9秒前
10秒前
11秒前
zgsjymysmyy发布了新的文献求助10
11秒前
11秒前
小红完成签到,获得积分10
12秒前
脑洞疼应助枝枝江采纳,获得10
12秒前
15秒前
木白发布了新的文献求助10
17秒前
fang发布了新的文献求助10
19秒前
冬柳完成签到,获得积分10
19秒前
跳跃的幻丝完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
怀素完成签到,获得积分10
23秒前
25秒前
25秒前
科研通AI5应助踏实的宝马采纳,获得10
29秒前
29秒前
31秒前
科研通AI5应助Hh采纳,获得10
34秒前
34秒前
wanci应助幸福大白采纳,获得10
35秒前
英俊的铭应助Evelyn采纳,获得10
37秒前
正直的煎饼完成签到,获得积分10
37秒前
38秒前
38秒前
40秒前
41秒前
十三完成签到 ,获得积分10
42秒前
44秒前
45秒前
安静沛春完成签到,获得积分20
46秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215307
求助须知:如何正确求助?哪些是违规求助? 3749656
关于积分的说明 11794701
捐赠科研通 3415646
什么是DOI,文献DOI怎么找? 1874466
邀请新用户注册赠送积分活动 928547
科研通“疑难数据库(出版商)”最低求助积分说明 837695