Predicting drug-induced liver injury using graph attention mechanism and molecular fingerprints

肝损伤 计算机科学 药品 机制(生物学) 图形 人工智能 药物开发 机器学习 计算生物学 医学 药理学 生物 理论计算机科学 哲学 认识论
作者
Jifeng Wang,Li Zhang,Jianqiang Sun,Xin Yang,Wei Wu,Wei Chen,Qi Zhao
出处
期刊:Methods [Elsevier BV]
卷期号:221: 18-26 被引量:35
标识
DOI:10.1016/j.ymeth.2023.11.014
摘要

Drug-induced liver injury (DILI) is a significant issue in drug development and clinical treatment due to its potential to cause liver dysfunction or damage, which, in severe cases, can lead to liver failure or even fatality. DILI has numerous pathogenic factors, many of which remain incompletely understood. Consequently, it is imperative to devise methodologies and tools for anticipatory assessment of DILI risk in the initial phases of drug development. In this study, we present DMFPGA, a novel deep learning predictive model designed to predict DILI. To provide a comprehensive description of molecular properties, we employ a multi-head graph attention mechanism to extract features from the molecular graphs, representing characteristics at the level of compound nodes. Additionally, we combine multiple fingerprints of molecules to capture features at the molecular level of compounds. The fusion of molecular fingerprints and graph features can more fully express the properties of compounds. Subsequently, we employ a fully connected neural network to classify compounds as either DILI-positive or DILI-negative. To rigorously evaluate DMFPGA's performance, we conduct a 5-fold cross-validation experiment. The obtained results demonstrate the superiority of our method over four existing state-of-the-art computational approaches, exhibiting an average AUC of 0.935 and an average ACC of 0.934. We believe that DMFPGA is helpful for early-stage DILI prediction and assessment in drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyzhnu完成签到,获得积分10
刚刚
刚刚
goldenfleece完成签到,获得积分10
1秒前
Hello应助禾下乘凉采纳,获得10
1秒前
蟹蟹发布了新的文献求助10
2秒前
难过隶发布了新的文献求助10
2秒前
深情笑南完成签到,获得积分20
2秒前
柠檬九分酸完成签到,获得积分10
3秒前
淡然向松完成签到,获得积分10
3秒前
CarryZ8发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
4秒前
刘钱美子完成签到,获得积分10
4秒前
dreamdraver完成签到,获得积分10
5秒前
orange完成签到,获得积分10
6秒前
kk发布了新的文献求助10
7秒前
禾下乘凉完成签到,获得积分10
7秒前
8秒前
Aaron举报奥德修斯凡求助涉嫌违规
8秒前
9秒前
慕趣完成签到,获得积分10
10秒前
蟹蟹完成签到,获得积分10
10秒前
10秒前
11秒前
爆米花应助read采纳,获得10
11秒前
11秒前
17599839662完成签到,获得积分10
11秒前
12秒前
12秒前
LLeaf发布了新的文献求助30
13秒前
明理小土豆完成签到,获得积分10
13秒前
淀粉肠发布了新的文献求助10
14秒前
14秒前
丶DeI完成签到,获得积分10
14秒前
journey完成签到 ,获得积分10
14秒前
15秒前
15秒前
AmyDong发布了新的文献求助10
15秒前
慕趣发布了新的文献求助10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598