A new modern scheme for solving fractal–fractional differential equations based on deep feedforward neural network with multiple hidden layer

人工神经网络 分数阶微积分 前馈神经网络 分形 前馈 计算机科学 算法 操作员(生物学) 数学 微分方程 数学优化 人工智能 应用数学 数学分析 生物化学 化学 抑制因子 控制工程 转录因子 工程类 基因
作者
Mohd Rashid Admon,Norazak Senu,Ali Ahmadian,Zanariah Abdul Majid,Soheil Salahshour
出处
期刊:Mathematics and Computers in Simulation [Elsevier BV]
卷期号:218: 311-333 被引量:4
标识
DOI:10.1016/j.matcom.2023.11.002
摘要

The recent development of knowledge in fractional calculus introduced an advanced superior operator known as fractal-fractional derivative (FFD). This operator combines memory effect and self-similar property that give better accurate representation of real world problems through fractal-fractional differential equations (FFDEs). However, the existence of fresh and modern numerical technique on solving FFDEs is still scarce. Originally invented for machine learning technique, artificial neural network (ANN) is cutting-edge scheme that have shown promising result in solving the fractional differential equations (FDEs). Thus, this research aims to extend the application of ANN to solve FFDE with power law kernel in Caputo sense (FFDEPC) by develop a vectorized algorithm based on deep feedforward neural network that consists of multiple hidden layer (DFNN-2H) with Adam optimization. During the initial stage of the method development, the basic framework on solving FFDEs is designed. To minimize the burden of computational time, the vectorized algorithm is constructed at the next stage for method to be performed efficiently. Several example have been tested to demonstrate the applicability and efficiency of the method. Comparison on exact solutions and some previous published method indicate that the proposed scheme have give good accuracy and low computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐天蓉发布了新的文献求助10
3秒前
4秒前
占囧完成签到,获得积分10
4秒前
4秒前
cccttt完成签到,获得积分10
5秒前
Ting完成签到,获得积分10
5秒前
6秒前
星辰大海应助gongranpi采纳,获得10
6秒前
Ava应助西卡采纳,获得10
8秒前
Docsiwen发布了新的文献求助20
8秒前
8秒前
半夏黄良发布了新的文献求助10
9秒前
10秒前
lfchen发布了新的文献求助10
12秒前
cdercder应助烹鱼宴糊锅采纳,获得20
13秒前
完美世界应助星如繁花采纳,获得10
14秒前
小不溜发布了新的文献求助10
15秒前
伶俐天蓉完成签到,获得积分10
17秒前
magneto完成签到,获得积分10
17秒前
嘻哈完成签到,获得积分10
17秒前
科研通AI5应助gongranpi采纳,获得10
18秒前
19秒前
虚幻初之完成签到,获得积分10
20秒前
学术蝗虫2726完成签到,获得积分10
22秒前
墨川完成签到,获得积分10
23秒前
12wsesd完成签到 ,获得积分10
23秒前
23秒前
25秒前
小不溜完成签到,获得积分10
25秒前
magneto发布了新的文献求助20
26秒前
JamesPei应助方寸采纳,获得10
26秒前
从容的完成签到 ,获得积分10
28秒前
猪猪hero应助coesite采纳,获得10
28秒前
28秒前
whatever举报求助违规成功
29秒前
kingwill举报求助违规成功
29秒前
29秒前
氘代乙腈是不贵的呀完成签到,获得积分10
30秒前
gongranpi完成签到,获得积分10
30秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793430
求助须知:如何正确求助?哪些是违规求助? 3338291
关于积分的说明 10289305
捐赠科研通 3054796
什么是DOI,文献DOI怎么找? 1676177
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761773