Blind Image Quality Assessment Based on Separate Representations and Adaptive Interaction of Content and Distortion

自编码 失真(音乐) 计算机科学 人工智能 代表(政治) 加权 图像质量 模式识别(心理学) 质量(理念) 图像(数学) 计算机视觉 数据挖掘 人工神经网络 带宽(计算) 认识论 政治 医学 放大器 计算机网络 哲学 政治学 法学 放射科
作者
Zehong Zhou,Fei Zhou,Guoping Qiu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2484-2497 被引量:4
标识
DOI:10.1109/tcsvt.2023.3299328
摘要

The visual quality of an image mainly relies on its content and its distortions. However, the adaptability between their contributions to the image quality has not be well investigated yet. Besides, albeit of many promising efforts, lacking sufficient labeled data still hinders the robust representation of quality-related information. In this work, we first design a self-supervised architecture, named collaborative autoencoder (COAE), to separately represent the content and the distortion information, and then develop a Self-Adaptive Weighting based quAlity predictoR (SAWAR) to balance the individual representations of the content and the distortions in the prediction of image quality. Specifically, the COAE is trained with large-scale unlabeled data, consisting of a content autoencoder (CAE) and a distortion autoencoder (DAE) that work collaboratively and individually. While the CAE is a standard autoencoder for the content representation, the design of the DAE is unique. We introduce the CAE-encoded content representation as an extra input to the decoder of the DAE to learn to reconstruct distorted images, thus effectively forcing it to extract the distortion representation. The SAWAR, whose parameter number is much smaller than that of the COAE, is trained with labeled data in existing IQA datasets. It takes advantage of the interaction between the image content and the distortions to adaptively balance their contributions. Extensive experiments show that the COAE effectively extracts quality-related representations and the SAWAR achieves the state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHL发布了新的文献求助10
1秒前
CodeCraft应助SSS采纳,获得10
1秒前
完美世界应助nihil采纳,获得10
2秒前
3秒前
研友_VZG7GZ应助伶俐雨双采纳,获得10
4秒前
万能图书馆应助clyde凌丫采纳,获得10
4秒前
玖玖发布了新的文献求助10
4秒前
6秒前
小橙子发布了新的文献求助20
6秒前
7秒前
8秒前
11发布了新的文献求助10
9秒前
hanlin完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
科研通AI5应助明亮的初雪采纳,获得30
11秒前
小巧雪碧发布了新的文献求助10
12秒前
SMG发布了新的文献求助10
12秒前
打打应助玉米采纳,获得10
13秒前
英俊的铭应助南风采纳,获得10
14秒前
正直涔雨发布了新的文献求助10
14秒前
SSS发布了新的文献求助10
15秒前
15秒前
17秒前
17秒前
逃避学习完成签到,获得积分10
19秒前
Azhou完成签到,获得积分10
19秒前
天天快乐应助时尚浩轩采纳,获得10
20秒前
21秒前
liangmh应助优秀乐松采纳,获得10
21秒前
米糊发布了新的文献求助10
23秒前
23秒前
JM发布了新的文献求助10
24秒前
sc30完成签到 ,获得积分10
24秒前
小边牧发布了新的文献求助10
26秒前
26秒前
思源应助qingzx采纳,获得10
26秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795026
求助须知:如何正确求助?哪些是违规求助? 3339955
关于积分的说明 10298247
捐赠科研通 3056550
什么是DOI,文献DOI怎么找? 1677052
邀请新用户注册赠送积分活动 805118
科研通“疑难数据库(出版商)”最低求助积分说明 762333