Hyperspectral and Panchromatic Images Fusion Based on the Dual Conditional Diffusion Models

人工智能 计算机科学 全色胶片 高光谱成像 计算机视觉 图像融合 模式识别(心理学) 特征(语言学) 图像分辨率 自编码 图像(数学) 深度学习 语言学 哲学
作者
Shuangliang Li,Siwei Li,Lihao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3321318
摘要

The fusion between the low resolution hyperspectral image (LRHSI) and the panchromatic (PAN) image could obtain the high-resolution hyperspectral image (HRHSI). Recently, deep learning (DL)-based fusion methods have been explored widely due to their powerful feature learning ability. However, most DL-based methods that use the one-step fusion manner can suffer from the blurring effect. In addition, they have not fully utilized the spatial and spectral feature information of two input images, which hinders the improvement of the resulting image quality. Therefore, to fully mitigate the blurring effect and utilize two input images, we propose a dual conditional diffusion models-based fusion network (DCDMF) to obtain the fused HRHSI. The conditional diffusion model (CDM) can generate the high quality image with realistic details in an iterative denoising manner (in the inference sampling stage) other than the one-step fusion manner, which could mitigate the blurring effect greatly. To improve the spatial and spectral fidelity of the fused HRHSI, we propose the dual spatial and spectral CDM (two noise prediction networks with different conditional input) to respectively extract the image feature from the LRHSI and PAN images with different image characteristics and reconstruct the corresponding HRHSI feature and fuse them. In addition, considering the high-dimensional property of the HSI, we pre-train an auto-encoder to encode the HSI into the low-dimensional latent space with more discriminate features to reduce the computational cost. Based on the auto-encoder, we also perform the image generation process in the residual latent space to focus on learning the residual latent spatial details. Extensive experimental results on three datasets show the superiority of our method over several state-of-the-art (SOTA) methods. (The ziyuan dataset and codes could be available at https://github.com/rs-lsl/DCDMF).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铜泰妍完成签到 ,获得积分10
刚刚
学呀学完成签到 ,获得积分10
1秒前
王灿灿发布了新的文献求助10
1秒前
方方完成签到 ,获得积分10
3秒前
bzdjsmw完成签到 ,获得积分10
3秒前
xiaofeiyan完成签到 ,获得积分10
7秒前
喝酸奶不舔盖完成签到 ,获得积分10
10秒前
甜甜圈完成签到 ,获得积分10
11秒前
LZJ完成签到 ,获得积分10
12秒前
木耳完成签到,获得积分20
14秒前
王灿灿完成签到,获得积分10
16秒前
16秒前
Whisper完成签到 ,获得积分10
17秒前
Xenia完成签到 ,获得积分10
22秒前
巧克力完成签到 ,获得积分10
25秒前
hyw完成签到 ,获得积分10
25秒前
盼盼完成签到,获得积分10
35秒前
38秒前
传奇3应助zhangruiii采纳,获得10
39秒前
hello完成签到 ,获得积分10
41秒前
Star完成签到 ,获得积分10
42秒前
43秒前
现实的洋葱完成签到 ,获得积分10
44秒前
《子非鱼》完成签到,获得积分10
46秒前
SIRT1发布了新的文献求助10
47秒前
woshiwuziq完成签到 ,获得积分10
49秒前
CF发布了新的文献求助10
49秒前
Lee0923完成签到,获得积分10
49秒前
陈皮完成签到 ,获得积分10
52秒前
zhangruiii完成签到,获得积分10
54秒前
时2完成签到,获得积分10
54秒前
nkmenghan完成签到,获得积分10
55秒前
SIRT1完成签到,获得积分10
56秒前
even完成签到 ,获得积分10
58秒前
Ms_Galaxea完成签到,获得积分10
58秒前
小公牛完成签到 ,获得积分10
59秒前
1分钟前
Peeeang完成签到,获得积分20
1分钟前
nojego发布了新的文献求助10
1分钟前
Owllight完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352794
关于积分的说明 10360437
捐赠科研通 3068774
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810395
科研通“疑难数据库(出版商)”最低求助积分说明 766095