Recent Advances in Catecholamines Analytical Detection Methods and Their Pretreatment Technologies

生化工程 计算机科学 纳米技术 数据科学 材料科学 工程类
作者
Jie Jiang,Meng Zhang,Zhilong Xu,Yali Yang,Yimeng Wang,Hong Zhang,Kai Yu,Guangfeng Kan,Yanxiao Jiang
出处
期刊:Critical Reviews in Analytical Chemistry [Taylor & Francis]
卷期号:: 1-20 被引量:8
标识
DOI:10.1080/10408347.2023.2258982
摘要

AbstractCatecholamines (CAs), including adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that play a critical role in regulating the cardiovascular system, metabolism, and stress response in the human body. As promising methods for real-time monitoring of catecholamine neurotransmitters, LC-MS detectors have gained widespread acceptance and shown significant progress over the past few years. Other detection methods such as fluorescence detection, colorimetric assays, surface-enhanced Raman spectroscopy, and surface plasmon resonance spectroscopy have also been developed to varying degrees. In addition, efficient pretreatment technology for CAs is flourishing due to the increasing development of many highly selective and recoverable materials. There are a few articles that provide an overview of electrochemical detection and efficient enrichment, but a comprehensive summary focusing on analytical detection technology is lacking. Thus, this review provides a comprehensive summary of recent analytical detection technology research on CAs published between 2017 and 2022. The advantages and limitations of relevant methods including efficient pretreatment technologies for biological matrices and analytical methods used in combination with pretreatment technology have been discussed. Overall, this review article provides a better understanding of the importance of accurate CAs measurement and offers perspectives on the development of novel methods for disease diagnosis and research in this field.Keywords: Catecholaminesneurotransmitteranalytical methodspretreatment technologybiological sample Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was supported by the National Natural Science Foundation of China (No. 22074026), the Natural Science Foundation of Shandong Province (No. ZR2022QB248) and the Scientific Research Foundation of Harbin Institute of Technology at Weihai (No. HIT (WH) 2022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日落之前逃跑吧完成签到,获得积分10
刚刚
YangYue发布了新的文献求助10
1秒前
邓佳鑫Alan应助走远了采纳,获得10
1秒前
joyemovie发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Master-wang完成签到,获得积分10
5秒前
5秒前
6秒前
8R60d8应助明理的尔蓝采纳,获得10
6秒前
安详的自中完成签到,获得积分10
6秒前
情怀应助琉璃岁月采纳,获得10
8秒前
Karol发布了新的文献求助10
8秒前
9秒前
大盏发布了新的文献求助20
9秒前
刘020107发布了新的文献求助10
11秒前
情怀应助able采纳,获得10
11秒前
12秒前
JamesPei应助YangYue采纳,获得10
12秒前
讨厌的十九岁完成签到,获得积分10
13秒前
66发布了新的文献求助10
14秒前
14秒前
枵蕾完成签到,获得积分10
14秒前
冬去春来发布了新的文献求助10
16秒前
栗子完成签到 ,获得积分10
16秒前
852应助小刘采纳,获得10
16秒前
RADIUM三餐都要吃肉完成签到 ,获得积分10
17秒前
杨氏发布了新的文献求助10
17秒前
ZXK完成签到 ,获得积分10
18秒前
19秒前
kuoping完成签到,获得积分10
20秒前
21秒前
无花果应助文艺奇迹采纳,获得10
21秒前
zzahyc完成签到,获得积分10
22秒前
发嗲的含芙完成签到,获得积分10
22秒前
23秒前
24秒前
24秒前
陈雨欣完成签到,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916140
求助须知:如何正确求助?哪些是违规求助? 3461652
关于积分的说明 10918265
捐赠科研通 3188510
什么是DOI,文献DOI怎么找? 1762665
邀请新用户注册赠送积分活动 853030
科研通“疑难数据库(出版商)”最低求助积分说明 793613