亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TMIC-84. A DEEP LEARNING-BASED METHOD FOR RAPID, PATIENT-SPECIFIC ASSAY OF MACROPHAGE INFILTRATION IN HIGH-GRADE GLIOMA USING LABEL-FREE STIMULATED RAMAN HISTOLOGY

胶质瘤 基本事实 组织学 深度学习 分割 人工智能 计算机科学 病理 核医学 生物 医学 癌症研究
作者
Daniel Alber,Emily Katherine Lock,Karl L. Sangwon,Andrew Smith,Misha Movahed-Ezazi,Eric K. Oermann,Todd Hollon,Daniel A. Orringer
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (Supplement_5): v297-v297
标识
DOI:10.1093/neuonc/noad179.1149
摘要

Abstract BACKGROUND 5-Aminolevulinic acid (5-ALA), the most widely used fluorophore in image-guided glioma surgery, identifies tumor-associated macrophages (TAM) in high-grade glioma (HGG) tissue. Infiltrating macrophages, the predominant immune cells in glioma, are highly implicated in tumor progression, recurrence, and treatment response – particularly in immunotherapy. Using a unique, paired dataset of label-free stimulated Raman histology (SRH) and two-photon microscopy (TPEF) images sharing one-to-one spatial resolution, we developed a deep-learning approach to automatically quantify TAM infiltration from intraoperatively acquired SRH images. METHODS We compiled a dataset of 906 paired whole-slide SRH/TPEF images from 79 patients with HGG. We first trained a pix2pix generative adversarial network to convert raw, label-free SRH into synthetic TPEF with identifiable macrophages. Next, we trained a MaskR-CNN model to locate and segment TAMs. The pix2pix network was trained using 5,531 hand-picked 300-by-300-pixel fields-of-view (FOV) best exemplifying TAMs. We used a human-in-the-loop approach to train the segmentation network on 1,000 hand-labeled FOVs. RESULTS Macrophage segmentation from purely histologic data was near-identical to the fluorescence-based ground truth, with a mean dice score of 90.3%. Predicted TAM density was highly correlated with r=0.735. Subgroup analyses of TAM density in 346,836 non-overlapping FOVs revealed significantly lower TAM density in IDH-mutant (p< 0.01) and MGMT-hypermethylated (p=0.03) tumors. Our end-to-end algorithm uses fresh, unlabeled tissue specimens in the operating room and takes just three minutes to analyze whole-slide SRH images. CONCLUSION We demonstrate how deep neural networks can be used to rapidly and quantitatively evaluate macrophage infiltration in HGG in the operating room. Our software enables analysis of glioma patients’ tumor immune environment without immunohistochemistry or fluorescent labels, and may be leveraged to study the effects of immune-modulating therapies in the tumor microenvironment. Future work will focus on evaluating macrophage density and distribution as biomarkers for response to immunotherapies showing efficacy in glioma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助王国茹采纳,获得10
6秒前
20秒前
25秒前
王国茹发布了新的文献求助10
27秒前
王国茹完成签到,获得积分20
55秒前
yu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
陈宸发布了新的文献求助10
1分钟前
本严发布了新的文献求助10
1分钟前
叛逆黑洞完成签到 ,获得积分10
2分钟前
Swear完成签到 ,获得积分10
2分钟前
3分钟前
狂野的蜡烛完成签到,获得积分10
3分钟前
阿米尔灿发布了新的文献求助10
3分钟前
阿米尔灿完成签到,获得积分10
3分钟前
七色光完成签到,获得积分10
3分钟前
3分钟前
memes发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
传奇3应助陶兜兜采纳,获得30
4分钟前
4分钟前
5分钟前
陶兜兜发布了新的文献求助30
5分钟前
李健应助陶兜兜采纳,获得10
5分钟前
打打应助米线ing采纳,获得10
5分钟前
顾矜应助Kashing采纳,获得10
5分钟前
彩虹儿完成签到,获得积分10
6分钟前
柏小霜完成签到 ,获得积分0
6分钟前
6分钟前
陶兜兜发布了新的文献求助10
6分钟前
深情安青应助陈宸采纳,获得10
6分钟前
lovelife完成签到,获得积分10
6分钟前
6分钟前
米线ing发布了新的文献求助10
7分钟前
iShine完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4342917
求助须知:如何正确求助?哪些是违规求助? 3850443
关于积分的说明 12020826
捐赠科研通 3491899
什么是DOI,文献DOI怎么找? 1916186
邀请新用户注册赠送积分活动 959200
科研通“疑难数据库(出版商)”最低求助积分说明 859327