Determination of Novel SARS-CoV-2 Inhibitors by Combination of Machine Learning and Molecular Modeling Methods

化学 法维皮拉维 对接(动物) 计算生物学 生物信息学 化学 李宾斯基五定律 自动停靠 分子描述符 立体化学 组合化学 药物发现 数量结构-活动关系 生物化学 生物 2019年冠状病毒病(COVID-19) 医学 护理部 疾病 病理 基因 传染病(医学专业)
作者
E Güner,Özgür Özkan,Gözde Yalçın,Süreyya Ölgen
出处
期刊:Medicinal Chemistry [Bentham Science Publishers]
卷期号:20 (2): 153-231
标识
DOI:10.2174/0115734064265609231026063624
摘要

Introduction:: Within the scope of the project, this study aimed to find novel inhibitors by combining computational methods. In order to design inhibitors, it was aimed to produce molecules similar to the RdRp inhibitor drug Favipiravir by using the deep learning method. Method:: For this purpose, a Trained Neural Network (TNN) was used to produce 75 molecules similar to Favipiravir by using Simplified Molecular Input Line Entry System (SMILES) representations. The binding properties of molecules to Viral RNA-dependent RNA polymerase (RdRp) were studied by using molecular docking studies. To confirm the accuracy of this method, compounds were also tested against 3CL protease (3CLpro), which is another important enzyme for the progression of SARS-CoV-2. Compounds having better binding energies and RMSD values than favipiravir were searched with similarity analysis on the ChEMBL drug database in order to find similar structures with RdRp and 3CLpro inhibitory activities. Result:: A similarity search found new 200 potential RdRp and 3CLpro inhibitors structurally similar to produced molecules, and these compounds were again evaluated for their receptor interactions with molecular docking studies. Compounds showed better interaction with RdRp protease than 3CLpro. This result presented that artificial intelligence correctly produced structures similar to favipiravir that act more specifically as RdRp inhibitors. In addition, Lipinski's rules were applied to the molecules that showed the best interaction with RdRp, and 7 compounds were determined to be potential drug candidates. Among these compounds, a Molecular Dynamic simulation study was applied for ChEMBL ID:1193133 to better understand the existence and duration of the compound in the receptor site. Conclusion:: The results confirmed that the ChEMBL ID:1193133 compound showed good Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), hydrogen bonding, and remaining time in the active site; therefore, it was considered that it could be active against the virus. This compound was also tested for antiviral activity, and it was determined that it did not delay viral infection, although it was cytotoxic between 5mg/mL-1.25mg/mL concentrations. However, if other compounds could be tested, it might provide a chance to obtain activity, and compounds should also be tested against the enzymes as well as the other types of viruses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助话家采纳,获得10
1秒前
shuenghei完成签到,获得积分10
1秒前
Tmp完成签到,获得积分10
2秒前
2秒前
4秒前
Hello应助MR黑采纳,获得10
4秒前
4秒前
uppnice发布了新的文献求助10
4秒前
小二郎应助Georges-09采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
wanci应助开心的远望采纳,获得30
5秒前
科研通AI5应助Gezelligheid.采纳,获得10
6秒前
6秒前
saber发布了新的文献求助10
7秒前
友好凌柏完成签到 ,获得积分10
7秒前
JoyGloria完成签到,获得积分10
7秒前
天天快乐应助李明珠采纳,获得10
7秒前
科研通AI5应助balabanana采纳,获得10
7秒前
pkujeff发布了新的文献求助10
8秒前
8秒前
YSM完成签到,获得积分0
8秒前
shj完成签到,获得积分20
8秒前
喜悦宫苴发布了新的文献求助20
8秒前
linlin发布了新的文献求助10
9秒前
123456发布了新的文献求助10
9秒前
ssjk发布了新的文献求助10
9秒前
9秒前
9秒前
Zilong864完成签到,获得积分10
10秒前
10秒前
琼仔仔完成签到 ,获得积分10
10秒前
mmiww发布了新的文献求助30
11秒前
wuyan204完成签到,获得积分10
11秒前
852应助毛77采纳,获得10
12秒前
lijin完成签到,获得积分20
12秒前
科研通AI5应助nicole采纳,获得30
12秒前
乌啦啦完成签到,获得积分10
13秒前
uppnice完成签到,获得积分20
13秒前
聪123完成签到,获得积分10
14秒前
开心的远望完成签到,获得积分20
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Battery Management Systems, Volume lll: Physics-Based Methods 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
Corpus Linguistics for Language Learning Research 300
Grammar in Action:Building comprehensive grammars of talk-in-interaction 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138012
求助须知:如何正确求助?哪些是违规求助? 3674693
关于积分的说明 11616228
捐赠科研通 3369333
什么是DOI,文献DOI怎么找? 1850859
邀请新用户注册赠送积分活动 914165
科研通“疑难数据库(出版商)”最低求助积分说明 829103