Photovoltaic efficiency enhancement via magnetism

材料科学 磁性 光伏系统 载流子 光电子学 纳米技术 异质结 凝聚态物理 物理 电气工程 工程类
作者
Monika Verma,Sanjeev Gautam
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier BV]
卷期号:588: 171436-171436 被引量:2
标识
DOI:10.1016/j.jmmm.2023.171436
摘要

The efficiency of photovoltaic cells has long been a subject of intense concern and research. Diverse photovoltaic cell types have been developed, including crystalline silicon cells (achieving up to 27.6% efficiency), multijunction cells (reaching up to 47.4% efficiency), thin film cells (attaining up to 23.6% efficiency), and emerging photovoltaic cells (exhibiting up to 33.7% efficiency). Despite advancements, achieving high efficiency on an industrial scale remains a significant challenge due to factors like charge carrier recombination rate, defects, temperature's influence, etc. Numerous approaches have been explored to address these challenges, encompassing strategies such as incorporation of nanoparticle within the active layer, studying transport properties and defects using ion beams, utilizing magnetite materials, and leveraging the application of magnetic fields. The influence of a magnetic field can amplify the generation of charge transfer states exhibiting triplet characteristics, increasing the charge separation time. However, magnetic fields introduce spin-based effects, enabling the investigation of interactions between electron spins and magnetic fields through state-of-an-art synchrotron radiation techniques like XMCD. Several innovative cell configurations have reported substantial efficiency enhancements under the influence of magnetic fields. Examples include TiO2-BiFeO3 dye-sensitized cells, polymer-based cells with Fe3O4@PANI additives integrated into TiO2-based dye-sensitized cells, and the incorporation of Fe-doped SnO2 within the active layer of heterojunction organic solar cells. In this perspective review, the profound impact of magnetism on enhancing efficiency in photovoltaic cells has been analysed and the utilization of advanced X-ray absorption spectroscopic techniques to probe and comprehend these intricate effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真谷雪发布了新的文献求助10
刚刚
科研通AI2S应助QR采纳,获得10
刚刚
thangxtz完成签到,获得积分10
1秒前
3秒前
小高同学发布了新的文献求助10
3秒前
wynn发布了新的文献求助30
8秒前
10秒前
11秒前
13秒前
852应助zhying55采纳,获得10
14秒前
揽星完成签到 ,获得积分10
22秒前
23秒前
王恒完成签到,获得积分10
24秒前
由由完成签到 ,获得积分10
26秒前
稳重奇异果应助jialin采纳,获得10
29秒前
春眠不觉小小酥完成签到,获得积分10
33秒前
35秒前
djbj2022发布了新的文献求助10
36秒前
Lucifer完成签到,获得积分10
36秒前
37秒前
华仔应助科研通管家采纳,获得10
37秒前
子车茗应助科研通管家采纳,获得30
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
Lucas应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
子车茗应助科研通管家采纳,获得30
38秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
打打应助科研通管家采纳,获得10
38秒前
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
爆米花应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
蛋卷儿应助科研通管家采纳,获得10
38秒前
共享精神应助科研通管家采纳,获得10
38秒前
小蘑菇应助科研通管家采纳,获得10
38秒前
乐乐应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得30
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
39秒前
三千世界完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778025
求助须知:如何正确求助?哪些是违规求助? 3323679
关于积分的说明 10215432
捐赠科研通 3038897
什么是DOI,文献DOI怎么找? 1667705
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339