Extracting symptoms from free-text responses using ChatGPT among COVID-19 cases in Hong Kong

2019年冠状病毒病(COVID-19) 匹配(统计) 医学 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 听力学 自然语言处理 疾病 内科学 计算机科学 病理 传染病(医学专业)
作者
Wan In Wei,Cyrus Lap Kwan Leung,Arthur Tang,Edward Braddon McNeil,Samuel Yeung Shan Wong,Kin On Kwok
出处
期刊:Clinical Microbiology and Infection [Elsevier]
卷期号:30 (1): 142.e1-142.e3 被引量:9
标识
DOI:10.1016/j.cmi.2023.11.002
摘要

Abstract

Objectives

To investigate the feasibility and performance of Chat Generative Pretrained Transformer (ChatGPT) in converting symptom narratives into structured symptom labels.

Methods

We extracted symptoms from 300 deidentified symptom narratives of COVID-19 patients by a computer-based matching algorithm (the standard), and prompt engineering in ChatGPT. Common symptoms were those with a prevalence >10% according to the standard, and similarly less common symptoms were those with a prevalence of 2–10%. The precision of ChatGPT was compared with the standard using sensitivity and specificity with 95% exact binomial CIs (95% binCIs). In ChatGPT, we prompted without examples (zero-shot prompting) and with examples (few-shot prompting).

Results

In zero-shot prompting, GPT-4 achieved high specificity (0.947 [95% binCI: 0.894–0.978]—1.000 [95% binCI: 0.965–0.988, 1.000]) for all symptoms, high sensitivity for common symptoms (0.853 [95% binCI: 0.689–0.950]—1.000 [95% binCI: 0.951–1.000]), and moderate sensitivity for less common symptoms (0.200 [95% binCI: 0.043–0.481]—1.000 [95% binCI: 0.590–0.815, 1.000]). Few-shot prompting increased the sensitivity and specificity. GPT-4 outperformed GPT-3.5 in response accuracy and consistent labelling.

Discussion

This work substantiates ChatGPT's role as a research tool in medical fields. Its performance in converting symptom narratives to structured symptom labels was encouraging, saving time and effort in compiling the task-specific training data. It potentially accelerates free-text data compilation and synthesis in future disease outbreaks and improves the accuracy of symptom checkers. Focused prompt training addressing ambiguous descriptions impacts medical research positively.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助qianqina采纳,获得30
3秒前
3秒前
Hanzel发布了新的文献求助10
5秒前
5秒前
滕滕花发布了新的文献求助10
7秒前
魔幻的访云完成签到 ,获得积分10
7秒前
lll完成签到,获得积分10
7秒前
qianqina完成签到,获得积分10
8秒前
Akim应助酷酷吐司采纳,获得10
8秒前
9秒前
9秒前
轨迹应助fighting采纳,获得50
13秒前
qianqina发布了新的文献求助30
15秒前
忧郁的期待完成签到,获得积分10
16秒前
李星翰完成签到,获得积分10
16秒前
17秒前
17秒前
22秒前
22秒前
高兴念真完成签到,获得积分10
22秒前
23秒前
彩色的凌旋完成签到,获得积分10
24秒前
24秒前
搜集达人应助陶醉的天菱采纳,获得10
25秒前
26秒前
26秒前
流川发布了新的文献求助10
27秒前
haha发布了新的文献求助10
28秒前
LongHua发布了新的文献求助10
28秒前
互助应助青青草采纳,获得10
29秒前
田様应助jewelliang采纳,获得10
29秒前
30秒前
Owen应助dingbeicn采纳,获得10
30秒前
qianqina发布了新的文献求助30
32秒前
関电脑完成签到,获得积分10
32秒前
33秒前
lili发布了新的文献求助10
33秒前
光亮海云应助王cc采纳,获得10
33秒前
热情蜗牛完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
生活在欺瞒的年代:傅树介政治斗争回忆录 260
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5878644
求助须知:如何正确求助?哪些是违规求助? 6554599
关于积分的说明 15684933
捐赠科研通 4997795
什么是DOI,文献DOI怎么找? 2693177
邀请新用户注册赠送积分活动 1635155
关于科研通互助平台的介绍 1592699