SCAResNet: A ResNet Variant Optimized for Tiny Object Detection in Transmission and Distribution Towers

计算机科学 特征(语言学) 人工智能 棱锥(几何) 目标检测 像素 模式识别(心理学) 计算机视觉 骨干网 联营 数学 哲学 语言学 几何学 计算机网络
作者
Weile Li,Muqing Shi,Zhonghua Hong
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:1
标识
DOI:10.1109/lgrs.2023.3315376
摘要

Traditional deep learning-based object detection networks often resize images during the data preprocessing stage to achieve a uniform size and scale in the feature map. Resizing is done to facilitate model propagation and fully connected classification. However, resizing inevitably leads to object deformation and loss of valuable information in the images. This drawback becomes particularly pronounced for tiny objects like distribution towers with linear shapes and few pixels. To address this issue, we propose abandoning the resizing operation. Instead, we introduce Positional-Encoding Multi-head Criss-Cross Attention. This allows the model to capture contextual information and learn from multiple representation subspaces, effectively enriching the semantics of distribution towers. Additionally, we enhance Spatial Pyramid Pooling by reshaping three pooled feature maps into a new unified one while also reducing the computational burden. This approach allows images of different sizes and scales to generate feature maps with uniform dimensions and can be employed in feature map propagation. Our SCAResNet incorporates these aforementioned improvements into the backbone network ResNet. We evaluated our SCAResNet using the Electric Transmission and Distribution Infrastructure Imagery dataset from Duke University. Without any additional tricks, we employed various object detection models with Gaussian Receptive Field based Label Assignment as the baseline. When incorporating the SCAResNet into the baseline model, we achieved a 2.1% improvement in mAPs. This demonstrates the advantages of our SCAResNet in detecting transmission and distribution towers and its value in tiny object detection. The source code is available at https://github.com/LisavilaLee/SCAResNet_mmdet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助道尔采纳,获得10
1秒前
2秒前
Snow发布了新的文献求助10
2秒前
2秒前
2秒前
leik完成签到,获得积分20
3秒前
3秒前
3秒前
4秒前
科研通AI5应助滚滚采纳,获得10
5秒前
7秒前
腾腾腾发布了新的文献求助10
7秒前
李剑鸿发布了新的文献求助30
8秒前
CodeCraft应助直角圆圈采纳,获得10
8秒前
合适的语芙完成签到,获得积分10
8秒前
脑洞疼应助杪123采纳,获得10
9秒前
称心曼安应助yxy采纳,获得10
9秒前
星月夜发布了新的文献求助10
10秒前
慕青应助LMFP采纳,获得10
10秒前
橘哩咕噜应助枕梦采纳,获得10
10秒前
高帮白袜完成签到,获得积分20
10秒前
10秒前
12秒前
阿卫完成签到,获得积分10
12秒前
高帮白袜发布了新的文献求助10
12秒前
13秒前
16秒前
16秒前
Remote发布了新的文献求助10
16秒前
兴奋书雪完成签到,获得积分10
17秒前
18秒前
leik发布了新的文献求助30
18秒前
可爱的函函应助俎树同采纳,获得10
18秒前
善学以致用应助strickland采纳,获得50
19秒前
杪123完成签到,获得积分20
19秒前
安白发布了新的文献求助10
19秒前
俞秋烟发布了新的文献求助100
20秒前
20秒前
Dr_Zhang完成签到 ,获得积分10
21秒前
SYLH应助烟袋斜了街采纳,获得10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818977
求助须知:如何正确求助?哪些是违规求助? 3362055
关于积分的说明 10415138
捐赠科研通 3080350
什么是DOI,文献DOI怎么找? 1694313
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768365