计算机科学
人工智能
音质
视听
可视化
情态动词
音频信号处理
语音识别
计算机视觉
音频信号
多媒体
语音编码
化学
高分子化学
作者
Sung-Bin Kim,Arda Senocak,Hyunwoo Ha,Andrew Owens,Tae-Hyun Oh
标识
DOI:10.1109/cvpr52729.2023.00622
摘要
How does audio describe the world around us? In this paper, we propose a method for generating an image of a scene from sound. Our method addresses the challenges of dealing with the large gaps that often exist between sight and sound. We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities despite their information gaps. The key idea is to enrich the audio features with visual information by learning to align audio to visual latent space. We translate the input audio to visual features, then use a pre-trained generator to produce an image. To further improve the quality of our generated images, we use sound source localization to select the audio-visual pairs that have strong cross-modal correlations. We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches. We also show that we can control our model's predictions by applying simple manipulations to the input waveform, or to the latent space.
科研通智能强力驱动
Strongly Powered by AbleSci AI