Construction of artificial intelligence non-invasive diagnosis model for common glomerular diseases based on hyperspectral and urine analysis

高光谱成像 试验装置 人工智能 像素 活检 集合(抽象数据类型) 计算机科学 放射科 模式识别(心理学) 训练集 数字化病理学 医学 程序设计语言
作者
Xiangyu Hou,Chongxuan Tian,Wen Liu,Yang Li,Wei Li,Zunsong Wang
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:44: 103736-103736 被引量:6
标识
DOI:10.1016/j.pdpdt.2023.103736
摘要

To develop a non-invasive fluid biopsy assisted diagnosis model for glomerular diseases based on hyperspectral, so as to solve the problem of poor compliance of patients with invasive examination and improve the early diagnosis rate of glomerular diseases.A total of 65 urine samples from patients who underwent renal biopsy from November 2020 to January 2022 in Qianfoshan Hospital of Shandong Province were collected.By simultaneously capturing spectral information of the above urine samples in the 400-1000 nm range, more obvious differences were found in the spectra of urine from patients with glomerular diseases between 650 nm and 680 nm. We obtained the original hyperspectral images in this wavelength range through digital scanning, and sampled pixel points at intervals on the original images. The two-dimensional digital image generated from each pixel point served as a member of the subsequent training and test sets. . After manually labeling the images according to different biopsy pathological types, they were randomly divided into training set (n = 58,800) and test set (n = 25,200). The training set was used for training learning and parameter iteration of artificial intelligence non-invasive liquid diagnosis model, and the test set for model recognition and interpretation. The evaluation indexes such as accuracy, sensitivity and specificity were calculated to evaluate the performance of the diagnosis model.The model has an accuracy rate of 96% for early diagnosis of four glomerular diseases.The auxiliary diagnosis model system has high accuracy. It is expected to be used as a non-invasive diagnostic method for glomerular diseases in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得30
刚刚
刚刚
ding应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得20
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
asdfzxcv应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Criminology34应助冷酷以太采纳,获得10
1秒前
1秒前
2秒前
unqiue完成签到,获得积分0
3秒前
华仔应助Alan采纳,获得10
3秒前
ttt完成签到,获得积分20
4秒前
ZM完成签到,获得积分10
4秒前
俭朴发卡完成签到,获得积分10
5秒前
Jared应助黄上权采纳,获得20
5秒前
5秒前
丰富硬币完成签到 ,获得积分10
5秒前
李笑格完成签到,获得积分10
6秒前
丘比特应助夏夏采纳,获得10
7秒前
abtitw完成签到,获得积分10
7秒前
7秒前
7秒前
好运莲莲发布了新的文献求助10
8秒前
研友_VZG7GZ应助cyl黄金杖采纳,获得10
8秒前
ttt发布了新的文献求助10
8秒前
看不完了发布了新的文献求助10
9秒前
10秒前
11秒前
yhb完成签到,获得积分10
12秒前
tetrisxzs发布了新的文献求助10
12秒前
研友_VZG7GZ应助tinale_huang采纳,获得30
14秒前
orixero应助秦始皇采纳,获得10
15秒前
NAAKOO发布了新的文献求助10
16秒前
16秒前
sf完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646642
求助须知:如何正确求助?哪些是违规求助? 4771984
关于积分的说明 15036015
捐赠科研通 4805413
什么是DOI,文献DOI怎么找? 2569677
邀请新用户注册赠送积分活动 1526636
关于科研通互助平台的介绍 1485860