Construction of artificial intelligence non-invasive diagnosis model for common glomerular diseases based on hyperspectral and urine analysis

高光谱成像 试验装置 人工智能 像素 活检 集合(抽象数据类型) 计算机科学 放射科 模式识别(心理学) 训练集 数字化病理学 医学 程序设计语言
作者
Xiangyu Hou,Chongxuan Tian,Wen Liu,Yang Li,Wei Li,Zunsong Wang
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier BV]
卷期号:44: 103736-103736 被引量:2
标识
DOI:10.1016/j.pdpdt.2023.103736
摘要

To develop a non-invasive fluid biopsy assisted diagnosis model for glomerular diseases based on hyperspectral, so as to solve the problem of poor compliance of patients with invasive examination and improve the early diagnosis rate of glomerular diseases.A total of 65 urine samples from patients who underwent renal biopsy from November 2020 to January 2022 in Qianfoshan Hospital of Shandong Province were collected.By simultaneously capturing spectral information of the above urine samples in the 400-1000 nm range, more obvious differences were found in the spectra of urine from patients with glomerular diseases between 650 nm and 680 nm. We obtained the original hyperspectral images in this wavelength range through digital scanning, and sampled pixel points at intervals on the original images. The two-dimensional digital image generated from each pixel point served as a member of the subsequent training and test sets. . After manually labeling the images according to different biopsy pathological types, they were randomly divided into training set (n = 58,800) and test set (n = 25,200). The training set was used for training learning and parameter iteration of artificial intelligence non-invasive liquid diagnosis model, and the test set for model recognition and interpretation. The evaluation indexes such as accuracy, sensitivity and specificity were calculated to evaluate the performance of the diagnosis model.The model has an accuracy rate of 96% for early diagnosis of four glomerular diseases.The auxiliary diagnosis model system has high accuracy. It is expected to be used as a non-invasive diagnostic method for glomerular diseases in clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rand完成签到,获得积分10
刚刚
再睡一夏完成签到 ,获得积分10
1秒前
咖啡先生发布了新的文献求助10
1秒前
富二蛋发布了新的文献求助10
1秒前
科研通AI5应助dl采纳,获得10
2秒前
HEAUBOOK应助hkh采纳,获得10
2秒前
稳重奇异果应助hkh采纳,获得10
3秒前
科研通AI2S应助hkh采纳,获得10
3秒前
稳重奇异果应助hkh采纳,获得10
3秒前
稳重奇异果应助hkh采纳,获得10
3秒前
科研通AI2S应助hkh采纳,获得10
3秒前
HEAUBOOK应助hkh采纳,获得10
3秒前
科研通AI2S应助hkh采纳,获得10
3秒前
科研通AI2S应助hkh采纳,获得10
3秒前
zy发布了新的文献求助10
4秒前
魔幻的紊发布了新的文献求助10
4秒前
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得20
6秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
今后应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得80
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
8秒前
aa完成签到,获得积分10
9秒前
Akim应助坚定啤酒采纳,获得10
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921