Dual-energy CT-based radiomics for predicting invasiveness of lung adenocarcinoma appearing as ground-glass nodules

医学 无线电技术 放射科 核医学 接收机工作特性 Lasso(编程语言) 组内相关 逻辑回归 腺癌 射线照相术 癌症 内科学 计算机科学 临床心理学 万维网 心理测量学
作者
Yuting Zheng,Xiaoyu Han,Xi Jia,Chengyu Ding,Kailu Zhang,Hanting Li,Cao Xue-Xiang,Xiaohui Zhang,Xin Zhang,Heshui Shi
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:11
标识
DOI:10.3389/fonc.2023.1208758
摘要

Objectives To explore the value of radiomics based on Dual-energy CT (DECT) for discriminating preinvasive or MIA from IA appearing as GGNs before surgery. Methods The retrospective study included 92 patients with lung adenocarcinoma comprising 30 IA and 62 preinvasive-MIA, which were further divided into a training (n=64) and a test set (n=28). Clinical and radiographic features along with quantitative parameters were recorded. Radiomics features were derived from virtual monoenergetic images (VMI), including 50kev and 150kev images. Intraclass correlation coefficients (ICCs), Pearson’s correlation analysis and least absolute shrinkage and selection operator (LASSO) penalized logistic regression were conducted to eliminate unstable and redundant features. The performance of the models was evaluated by area under the curve (AUC) and the clinical utility was assessed using decision curve analysis (DCA). Results The DECT-based radiomics model performed well with an AUC of 0.957 and 0.865 in the training and test set. The clinical-DECT model, comprising sex, age, tumor size, density, smoking, alcohol, effective atomic number, and normalized iodine concentration, had an AUC of 0.929 in the training and 0.719 in the test set. In addition, the radiomics model revealed a higher AUC value and a greater net benefit to patients than the clinical-DECT model. Conclusion DECT-based radiomics features were valuable in predicting the invasiveness of GGNs, yielding a better predictive performance than the clinical-DECT model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
刚刚
桐桐应助动人的向松采纳,获得200
1秒前
罗罗罗发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
WWXWWX完成签到,获得积分10
2秒前
2秒前
风清扬应助净刑采纳,获得30
2秒前
2秒前
IMUtensor完成签到,获得积分20
4秒前
爆米花应助WWW采纳,获得10
4秒前
桐桐应助蓝胖子采纳,获得10
5秒前
调皮老头完成签到,获得积分10
5秒前
何谓完成签到 ,获得积分10
5秒前
5秒前
gk发布了新的文献求助10
5秒前
情怀应助小王采纳,获得10
6秒前
sfwrbh发布了新的文献求助10
6秒前
yukunwang完成签到,获得积分10
6秒前
玄武岩完成签到,获得积分10
7秒前
科研小白完成签到,获得积分10
8秒前
搜集达人应助小幸运采纳,获得10
8秒前
简若发布了新的文献求助10
9秒前
9秒前
曰归完成签到,获得积分20
9秒前
kkm发布了新的文献求助10
9秒前
11发布了新的文献求助20
10秒前
sfwrbh完成签到,获得积分10
11秒前
研友_VZG7GZ应助十一玮采纳,获得10
11秒前
灰烬发布了新的文献求助10
12秒前
水之虞完成签到 ,获得积分10
12秒前
13秒前
qwerty完成签到,获得积分10
13秒前
英姑应助WangKaka采纳,获得10
13秒前
13秒前
Sujie发布了新的文献求助10
14秒前
kais完成签到 ,获得积分10
14秒前
雍州小铁匠完成签到 ,获得积分10
15秒前
科研通AI5应助Quincy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703854
求助须知:如何正确求助?哪些是违规求助? 4071125
关于积分的说明 12588699
捐赠科研通 3771729
什么是DOI,文献DOI怎么找? 2083322
邀请新用户注册赠送积分活动 1110535
科研通“疑难数据库(出版商)”最低求助积分说明 988364