亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep-learning framework for borehole formation properties prediction using heterogeneous well-logging data: A case study of a carbonate reservoir in the Gaoshiti-Moxi area, Sichuan Basin, China

钻孔 登录中 测井 地质学 人工神经网络 计算机科学 卷积神经网络 人工智能 石油工程 岩土工程 生态学 生物
作者
Lei Lin,Huang Hong,Pengyun Zhang,Weichao Yan,Hao Wei,H. Liu,Zhi Zhong
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): WA295-WA308 被引量:3
标识
DOI:10.1190/geo2023-0151.1
摘要

The properties of borehole formations, such as porosity, permeability, and water saturation, play a crucial role in characterizing and evaluating subsurface reservoirs. Although core sample experiments offer precise measurements, they are time consuming and cost intensive. An alternative method is to use the logging data to construct an empirical model that predicts formation properties, which is widely studied due to its speed and affordability. Nevertheless, because the response of a logging point reflects its surrounding formation, conventional logging methods relying on point-to-point (P2P) mapping perform poorly in complex reservoirs. Furthermore, the resolution of conventional logging is lower compared with imaging logging. To address these limitations, this study presents a novel approach to predict formation properties based on a deep-learning framework using heterogeneous well-logging data. Our neural network framework takes short sequences of conventional logging data and windowed imaging logging data as inputs. The neural network applies 1D convolution to extract features from the conventional logging sequences and 2D convolution to extract features from the resistivity imaging data. Then, these two feature vectors are fused and fed into a multilayer fully connected neural network to predict formation properties. A case study of a carbonate reservoir demonstrates that our method delivers more accurate predictions of formation porosity, permeability, and water saturation than the P2P, sequence-to-point, and image-to-point prediction methods. Moreover, it is expected that our paradigm will serve as a source of inspiration for forthcoming research endeavors aimed at enhancing the accuracy of predicting borehole formation properties in complex reservoirs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Hh采纳,获得10
1秒前
7秒前
dph发布了新的文献求助10
9秒前
研友_LX665Z发布了新的文献求助10
13秒前
xll发布了新的文献求助10
20秒前
24秒前
32秒前
早早发布了新的文献求助30
33秒前
更深的蓝发布了新的文献求助30
38秒前
更深的蓝完成签到,获得积分10
46秒前
排骨大王完成签到,获得积分10
48秒前
49秒前
51秒前
Jasper应助早早采纳,获得30
52秒前
cc发布了新的文献求助10
55秒前
cc完成签到,获得积分10
1分钟前
爆米花应助Ruru采纳,获得10
1分钟前
不想搞事应助Lyapunov采纳,获得10
1分钟前
zhengqisong完成签到,获得积分10
1分钟前
Ava应助破晓采纳,获得10
1分钟前
1分钟前
Ruru发布了新的文献求助10
1分钟前
1分钟前
Ruru完成签到,获得积分10
1分钟前
1分钟前
破晓发布了新的文献求助10
1分钟前
研友_LX665Z完成签到,获得积分10
1分钟前
Hh发布了新的文献求助10
1分钟前
UPUP0707发布了新的文献求助50
1分钟前
LNE完成签到,获得积分10
2分钟前
健壮的花瓣完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
不想搞事应助Lyapunov采纳,获得10
2分钟前
嘉心糖完成签到,获得积分0
2分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047970
求助须知:如何正确求助?哪些是违规求助? 3585777
关于积分的说明 11395296
捐赠科研通 3312679
什么是DOI,文献DOI怎么找? 1822658
邀请新用户注册赠送积分活动 894629
科研通“疑难数据库(出版商)”最低求助积分说明 816439