A survey of strategy-driven evasion methods for PE malware: Transformation, concealment, and attack

逃避(道德) 恶意软件 计算机科学 计算机安全 隐病毒学 混淆 网络空间 过程(计算) 隐蔽的 数据科学 互联网 万维网 免疫系统 免疫学 生物 操作系统 语言学 哲学
作者
Jiaxuan Geng,Junfeng Wang,Zhiyang Fang,Yingjie Zhou,Di Wu,Wenhan Ge
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103595-103595 被引量:16
标识
DOI:10.1016/j.cose.2023.103595
摘要

The continuous proliferation of malware poses a formidable threat to the cyberspace landscape. Researchers have proffered a multitude of sophisticated defense mechanisms aimed at its detection and mitigation. Nevertheless, malware writers persistently pursue pioneering and innovative methods to evade detection by security software, thereby presenting an ever-evolving and dynamic threat to computer systems. Malware evasion refers to the use of certain strategies by malware to evade the detection of security software. Despite numerous surveys on malware evasion techniques, the existing surveys were fragmented and focused on specific types of evasion methods, leading to a lack of systematic and comprehensive research on malware evasion approaches. To fill this gap, this paper proposed a strategy-driven framework from the perspective of malware writers. Based on this framework, we categorize existing evasion detection techniques into transformation (alter the structural and behavioral pattern of the malware), concealment (conceal the behavior of the malware), and attack-based (engage in an attack on the detector to render it inoperable) methods and conduct a comprehensive survey of the relevant research works. In addition, we demonstrate how to integrate existing evasion strategies in the process of generating malware from the perspective of malware writers to subvert the multiple defenses of defenders. Our investigation indicates that: 1) evasion techniques such as packer and code obfuscation remain the foremost selection for attackers, no fewer than 10 off-the-shelf tools provide great assistance to them, 2) environment analysis is the primary concealment-based strategy used by the attacker (48% of the reviewed concealment-based strategy), defenders need greater efforts to counter them, 3) only 3 works discussed techniques for evasion attacks by leveraging fragilities in antivirus engines, meaning that direct attack on the detector is no longer as effective, 4) reinforcement learning algorithm serves as the most popular adversarial attack-based methods and 50% of works based on reinforcement learning are effective against real-world antivirus engines. Furthermore, this paper delves into the development trends in evasive malware and open issues for defenders. The primary objective of this survey is to furnish researchers and practitioners with a thorough comprehension of malware evasion strategies and techniques, thereby fostering the advancement of more potent and efficient approaches to detect and thwart malware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aicy1111111完成签到,获得积分10
1秒前
azw发布了新的文献求助10
2秒前
zephyr完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
Geminiwod发布了新的文献求助10
5秒前
zephyr发布了新的文献求助10
5秒前
李霁航关注了科研通微信公众号
5秒前
不羁的风完成签到 ,获得积分10
6秒前
小沉沉发布了新的文献求助10
7秒前
打打应助5552222采纳,获得10
7秒前
9秒前
9秒前
10秒前
12秒前
图图完成签到 ,获得积分10
12秒前
NexusExplorer应助无语的凌瑶采纳,获得10
12秒前
科目三应助zzzcx采纳,获得10
13秒前
14秒前
14秒前
15秒前
Iris完成签到 ,获得积分10
16秒前
小枫发布了新的文献求助10
16秒前
16秒前
kekeke科发布了新的文献求助10
17秒前
情怀应助蛰伏的小宇宙采纳,获得10
18秒前
19秒前
沙猛发布了新的文献求助20
19秒前
20秒前
22秒前
现代白玉完成签到,获得积分10
22秒前
香蕉觅云应助小枫采纳,获得10
23秒前
张璋发布了新的文献求助10
25秒前
seal完成签到 ,获得积分20
26秒前
Surpass发布了新的文献求助10
26秒前
zasideler完成签到,获得积分10
26秒前
现代白玉发布了新的文献求助10
26秒前
天天发布了新的文献求助10
27秒前
zjt18完成签到,获得积分10
27秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4160209
求助须知:如何正确求助?哪些是违规求助? 3695967
关于积分的说明 11671937
捐赠科研通 3387680
什么是DOI,文献DOI怎么找? 1857633
邀请新用户注册赠送积分活动 918590
科研通“疑难数据库(出版商)”最低求助积分说明 831605