Early dropout predictors in social sciences and management degree students

辍学(神经网络) 逻辑回归 罗伊特 心理学 预测能力 人工神经网络 稳健性(进化) 高等教育 数学教育 统计 计量经济学 计算机科学 数学 人工智能 机器学习 经济 哲学 生物化学 化学 认识论 基因 经济增长
作者
José María Ortiz-Lozano,Pilar Aparicio-Chueca,Xavier María Triadó i Ivern,José Luis Arroyo Barrigüete
出处
期刊:Studies in Higher Education [Routledge]
卷期号:49 (8): 1303-1316 被引量:8
标识
DOI:10.1080/03075079.2023.2264343
摘要

ABSTRACTStudent dropout is a major concern in studies investigating retention strategies in higher education. This study identifies which variables are important to predict student dropout, using academic data from 3583 first-year students on the Business Administration (BA) degree at the University of Barcelona (Spain). The results indicate that two variables, the percentage of subjects failed and not attended in the first semester, demonstrate significant predictive power. This has been corroborated with an additional sample of 10,784 students from three-degree programs (Law, BA, and Economics) at the Complutense University of Madrid (Spain), to assess the robustness of the results. Three different algorithms have also been utilized: neural networks, random forest, and logit. In the specific case of neural networks, the NeuralSens methodology has been employed, which is based on the use of sensitivities, allowing for its interpretation. The outcomes are highly consistent in all cases: both a simple model (logit) and more sophisticated ones (neural networks and random forest) exhibit high accuracy (correctly predicted values) and sensitivity (correctly predicted dropouts). In test set average values of 77% and 69% have been respectively achieved. In this regard, a noteworthy point is that only academic data from the university itself was used to develop the models. This ensures that there's no dependence on other personal or organizational variables, which can often be difficult to access.KEYWORDS: Predictionuniversity dropouteducational data miningacademic performanceneural networks Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Other studies, such as that of Lizarte Simón and Gijón Puerta (Citation2022), in this case using a sample of students from Early Childhood, Primary, and Social Education and Pedagogy degree programs, achieve an accuracy of 91%, using predictors derived from a survey that evaluates various academic dimensions. This means, once again, the model requires access to a series of variables that are challenging to obtain.Additional informationFundingThis work was supported by Ministerio de Ciencia e Innovación [grant number: PID202020-116293RB-I00]. The authors would like to thank Universidad Complutense de Madrid (UCM) for the data, which have been obtained from the Integrated Institutional Data System (SIDI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助12334采纳,获得10
刚刚
打打应助折纸采纳,获得10
1秒前
酷波er应助折纸采纳,获得10
1秒前
隐形曼青应助折纸采纳,获得10
1秒前
完美世界应助折纸采纳,获得10
1秒前
小蘑菇应助折纸采纳,获得10
1秒前
浮游应助1111采纳,获得10
1秒前
Can完成签到,获得积分10
2秒前
2秒前
思源应助天真的秋翠采纳,获得10
2秒前
搜集达人应助天真的秋翠采纳,获得10
2秒前
爆米花应助天真的秋翠采纳,获得10
2秒前
JamesPei应助天真的秋翠采纳,获得10
2秒前
呦呦君必发SCI完成签到,获得积分10
2秒前
Akim应助天真的秋翠采纳,获得10
2秒前
情怀应助天真的秋翠采纳,获得10
3秒前
慕青应助天真的秋翠采纳,获得10
3秒前
wanci应助天真的秋翠采纳,获得10
3秒前
慕青应助天真的秋翠采纳,获得10
3秒前
款冬完成签到,获得积分10
3秒前
阿易完成签到,获得积分10
3秒前
所所应助张雯雯采纳,获得10
3秒前
3秒前
天天快乐应助赵小慧儿采纳,获得10
4秒前
nexus完成签到,获得积分0
4秒前
眼睛大的文龙完成签到 ,获得积分10
4秒前
浮游应助辛勤兔子采纳,获得10
4秒前
乙醇完成签到 ,获得积分10
4秒前
852应助清脆的秋寒采纳,获得10
5秒前
6秒前
慢慢子发布了新的文献求助20
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
科研通AI5应助Weirdo采纳,获得50
7秒前
小黄鸭关注了科研通微信公众号
7秒前
7秒前
7秒前
7秒前
之风百度完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070872
求助须知:如何正确求助?哪些是违规求助? 4291937
关于积分的说明 13372261
捐赠科研通 4112335
什么是DOI,文献DOI怎么找? 2251967
邀请新用户注册赠送积分活动 1257071
关于科研通互助平台的介绍 1189769