Adaptive scalable spatio-temporal graph convolutional network for PM2.5 prediction

计算机科学 可扩展性 图形 数据挖掘 卷积(计算机科学) 时间序列 人工智能 机器学习 理论计算机科学 人工神经网络 数据库
作者
Qingjian Ni,Yuhui Wang,Jiayi Yuan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107080-107080 被引量:4
标识
DOI:10.1016/j.engappai.2023.107080
摘要

PM2.5 Prediction is a complex task of large-scale spatio-temporal analysis, which not only needs comprehension of static geospatial knowledge and relative features but also needs to analyze the real-time situation. This paper discusses the characteristics of the static graph and the dynamic graph in spatio-temporal series tasks. An Adaptive Scalable Spatio-temporal Graph Convolutional Network(ASGCN) model is proposed to predict PM2.5. To capture and analyze the characteristics of the time series period of PM2.5, a time convolution network based on the strategies of inception and gating is proposed and used as a temporal module. A dynamic graph idea is adopted to distinguish the spatio-temporal similarity of different periods. And an adaptive weighted multilayer graph convolution network is used to process static and dynamic graphs, aiming to analyze the spatial relationship of PM2.5 stations. The convolution network with the inception and gating improves the time-series feature capture ability, and adaptive static and dynamic graphs enhance the spatial relationship analysis ability. The temporal and spatial modules of the model are relatively independent, which benefits obtaining the potential information of datasets to improve the prediction accuracy. At the same time, these modules cooperate to make the model adaptable to various data. We choose a great number of comparative models and design a thorough experimental scheme including single-step prediction, multi-step prediction, hyperparameter experiments, and ablation experiments on two real PM2.5 datasets collected in China. Finally, the model achieves performance close to or better than the current state-of-the-art models selected for comparison in prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wang发布了新的文献求助10
1秒前
君子不器完成签到,获得积分10
1秒前
研友_nvg41Z完成签到,获得积分10
1秒前
光亮初蓝完成签到,获得积分10
1秒前
1秒前
1秒前
chencheng发布了新的文献求助10
3秒前
惊鸿客完成签到,获得积分10
3秒前
4秒前
一条咸瑜完成签到 ,获得积分10
4秒前
5秒前
无共鸣发布了新的文献求助10
5秒前
5秒前
5秒前
无花果应助wang采纳,获得10
5秒前
华仔应助敏敏子呀采纳,获得10
6秒前
DN完成签到,获得积分10
6秒前
Makarena完成签到,获得积分10
6秒前
YuZhang8034发布了新的文献求助10
7秒前
乐淘淘完成签到,获得积分10
7秒前
huifang完成签到,获得积分10
7秒前
特大包包发布了新的文献求助10
7秒前
7秒前
十一完成签到,获得积分10
8秒前
zk092988发布了新的文献求助10
8秒前
科研通AI6应助任性的鸵鸟采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
yang发布了新的文献求助10
10秒前
ajuehdj完成签到,获得积分10
10秒前
11秒前
Lin2019发布了新的文献求助10
11秒前
11秒前
儒雅南风完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285510
求助须知:如何正确求助?哪些是违规求助? 4438590
关于积分的说明 13817821
捐赠科研通 4319976
什么是DOI,文献DOI怎么找? 2371234
邀请新用户注册赠送积分活动 1366760
关于科研通互助平台的介绍 1330228