Neglected but Efficient Electron Utilization Driven by Biochar-Coactivated Phenols and Peroxydisulfate: Polyphenol Accumulation Rather than Mineralization

过氧二硫酸盐 生物炭 化学 光化学 电子转移 激进的 氧化还原 电子受体 催化作用 电化学 热解 无机化学 有机化学 电极 物理化学
作者
Jibo Dou,Yao Tang,Zhijiang Lu,Guangzhi He,Jianming Xu,Yan He
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (14): 5703-5713 被引量:92
标识
DOI:10.1021/acs.est.3c00022
摘要

We report an unrecognized but efficient nonradical mechanism in biochar-activated peroxydisulfate (PDS) systems. Combining a newly developed fluorescence trapper of reactive oxygen species with steady-state concentration calculations, we showed that raising pyrolysis temperatures of biochar (BC) from 400 to 800 °C remarkably enhanced trichlorophenol degradation but inhibited the catalytic production of radicals (SO4•– and •OH) in water and soil, thereby switching a radical-based activation into an electron-transfer-dominated nonradical pathway (contribution increased from 12.9 to 76.9%). Distinct from previously reported PDS* complex-determined oxidation, in situ Raman and electrochemical results of this study demonstrated that the simultaneous activation of phenols and PDS on the biochar surface triggers the potential difference-driven electron transfer. The formed phenoxy radicals subsequently undergo coupling and polymerization reactions to generate dimeric and oligomeric intermediates, which are eventually accumulated on the biochar surface and removed. Such a unique nonmineralizing oxidation achieved an ultrahigh electron utilization efficiency (ephenols/ePDS) of 182%. Through biochar molecular modeling and theoretical calculations, we highlighted the critical role of graphitic domains rather than redox-active moieties in lowering band-gap energy to facilitate electron transfer. Our work provides insights into outstanding contradictions and controversies related to nonradical oxidation and inspiration for more oxidant-saving remediation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
完美世界应助小陆采纳,获得10
2秒前
潘磊完成签到,获得积分10
2秒前
4秒前
4秒前
阿渺发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI5应助简单的惋庭采纳,获得10
7秒前
hixx发布了新的文献求助30
7秒前
Zz发布了新的文献求助10
9秒前
9秒前
11秒前
13秒前
yang完成签到,获得积分10
15秒前
乐乐应助俭朴的猫咪采纳,获得10
15秒前
18秒前
甜美的兔子完成签到,获得积分10
22秒前
23秒前
bkagyin应助迅速的八宝粥采纳,获得10
24秒前
24秒前
Nick完成签到,获得积分10
25秒前
慎ming发布了新的文献求助80
27秒前
zyc发布了新的文献求助10
28秒前
Sicily发布了新的文献求助10
28秒前
30秒前
NexusExplorer应助xgx984采纳,获得10
31秒前
32秒前
Emper发布了新的文献求助10
35秒前
你博哥完成签到 ,获得积分10
37秒前
欢呼流沙发布了新的文献求助10
37秒前
在水一方应助Sicily采纳,获得10
39秒前
Ava应助爱撒娇的凝安采纳,获得10
41秒前
42秒前
43秒前
顾矜应助威士忌www采纳,获得10
44秒前
科研通AI5应助谦让忆文采纳,获得10
46秒前
herschelwu发布了新的文献求助10
46秒前
忧伤的飞机完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669