Neglected but Efficient Electron Utilization Driven by Biochar-Coactivated Phenols and Peroxydisulfate: Polyphenol Accumulation Rather than Mineralization

过氧二硫酸盐 生物炭 化学 光化学 电子转移 激进的 氧化还原 电子受体 催化作用 电化学 热解 无机化学 有机化学 电极 物理化学
作者
Jibo Dou,Yao Tang,Zhijiang Lu,Guangzhi He,Jianming Xu,Yan He
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (14): 5703-5713 被引量:29
标识
DOI:10.1021/acs.est.3c00022
摘要

We report an unrecognized but efficient nonradical mechanism in biochar-activated peroxydisulfate (PDS) systems. Combining a newly developed fluorescence trapper of reactive oxygen species with steady-state concentration calculations, we showed that raising pyrolysis temperatures of biochar (BC) from 400 to 800 °C remarkably enhanced trichlorophenol degradation but inhibited the catalytic production of radicals (SO4•- and •OH) in water and soil, thereby switching a radical-based activation into an electron-transfer-dominated nonradical pathway (contribution increased from 12.9 to 76.9%). Distinct from previously reported PDS* complex-determined oxidation, in situ Raman and electrochemical results of this study demonstrated that the simultaneous activation of phenols and PDS on the biochar surface triggers the potential difference-driven electron transfer. The formed phenoxy radicals subsequently undergo coupling and polymerization reactions to generate dimeric and oligomeric intermediates, which are eventually accumulated on the biochar surface and removed. Such a unique nonmineralizing oxidation achieved an ultrahigh electron utilization efficiency (ephenols/ePDS) of 182%. Through biochar molecular modeling and theoretical calculations, we highlighted the critical role of graphitic domains rather than redox-active moieties in lowering band-gap energy to facilitate electron transfer. Our work provides insights into outstanding contradictions and controversies related to nonradical oxidation and inspiration for more oxidant-saving remediation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lululu完成签到,获得积分10
1秒前
LiXQ发布了新的文献求助10
2秒前
3秒前
wanci应助junjun采纳,获得20
4秒前
6秒前
ycy发布了新的文献求助10
6秒前
orixero应助自由大象采纳,获得10
9秒前
9秒前
游羽应助南国采纳,获得10
12秒前
福西西完成签到,获得积分20
14秒前
15秒前
乐乐应助正直曼柔采纳,获得10
15秒前
15秒前
大个应助科研通管家采纳,获得10
15秒前
15秒前
不懈奋进应助科研通管家采纳,获得10
15秒前
15秒前
wk990240应助科研通管家采纳,获得20
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
16秒前
16秒前
17秒前
wanci应助车干采纳,获得20
18秒前
Ava应助Mississippiecho采纳,获得10
18秒前
hhha发布了新的文献求助10
19秒前
Cher发布了新的文献求助10
21秒前
21秒前
优雅逍遥完成签到 ,获得积分10
22秒前
自由大象发布了新的文献求助10
23秒前
852应助坚强小熊猫采纳,获得10
23秒前
PT完成签到,获得积分10
23秒前
丘比特应助天菱采纳,获得10
23秒前
兴奋大开发布了新的文献求助10
25秒前
27秒前
烟花应助十三采纳,获得10
28秒前
28秒前
赘婿应助孤独沛菡采纳,获得10
29秒前
31秒前
32秒前
FAN发布了新的文献求助100
32秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Hieronymi Mercurialis Foroliviensis De arte gymnastica libri sex: In quibus exercitationum omnium vetustarum genera, loca, modi, facultates, & ... exercitationes pertinet diligenter explicatur Hardcover – 26 August 2016 900
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2404258
求助须知:如何正确求助?哪些是违规求助? 2102893
关于积分的说明 5307159
捐赠科研通 1830555
什么是DOI,文献DOI怎么找? 912123
版权声明 560502
科研通“疑难数据库(出版商)”最低求助积分说明 487683