亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate prediction of semiconductor bandgaps based on machine learning and prediction of bandgaps for two-dimensional heterojunctions

带隙 材料科学 半导体 宽禁带半导体 异质结 混合功能 工作(物理) 光电子学 机器学习 计算机科学 密度泛函理论 计算化学 热力学 物理 化学
作者
Huan Liu,Liang Xu,Zongle Ma,Zhengquan Li,Haotian Li,Ying Zhang,Bo Zhang,Lingling Wang
出处
期刊:Materials today communications [Elsevier BV]
卷期号:36: 106578-106578 被引量:4
标识
DOI:10.1016/j.mtcomm.2023.106578
摘要

The bandgap value of materials has a profound impact on their properties and applications. Presently, with the development of high-throughput calculations, the bandgap of most materials is simulated and calculated using the density functional theory (DFT). Nevertheless, the bandgap of materials calculated in this way is often accompanied by large errors and long time consuming. Besides, the bandgap results obtained in different experimental environments are different. Therefore, finding a method to calculate the material bandgaps quickly and accurately is imminent. In this work, the Machine Learning (ML) method is used to predict the bandgap of semiconductor materials. Four different machine learning models are trained and tested through the feature processing, which can accurately predict the bandgap of the material by the hybrid density functional (HSE06) method, of which the average mean absolute error (MAE) is 0.142 eV and the coefficient of determination (R2) is 0.977. Moreover, in order to better predict the bandgap of local small-sample semiconductor materials, the federal learning framework is employed to forecast small-sample datasets under different experimental conditions. Then, the four ML models are used to the prediction of materials and compared the results with the local calculation results. The results indicate that the bandgap error of compound semiconductor materials is 2∼10%, and the bandgap error of 2D heterojunctions semiconductor materials is 5∼30%. In addition, the ML models are also utilized to the Materials Project database, in which the bandgap of about 53170 semiconductor materials is successfully predicted. In conclusion, the work not only provides a method to accurately predict the bandgap of compound semiconductor materials, but also supplies an effective idea for the prediction of the bandgap of semiconductor materials in local small data sets, which accelerating the development of the application of semiconductor materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
张张发布了新的文献求助10
4秒前
MartinaLZ应助张张采纳,获得10
23秒前
科研通AI2S应助张张采纳,获得10
23秒前
可爱的函函应助张张采纳,获得10
23秒前
满意访冬完成签到,获得积分20
1分钟前
1分钟前
科研通AI5应助满意访冬采纳,获得10
1分钟前
渡己完成签到 ,获得积分10
1分钟前
Oracle应助bruna采纳,获得100
1分钟前
wanjingwan完成签到 ,获得积分10
1分钟前
2分钟前
提桶跑路完成签到 ,获得积分10
2分钟前
2分钟前
满意访冬发布了新的文献求助10
2分钟前
于清绝完成签到 ,获得积分10
2分钟前
昏睡的乌冬面完成签到 ,获得积分10
3分钟前
小白菜完成签到,获得积分10
3分钟前
浮生若梦完成签到,获得积分10
3分钟前
搜集达人应助YD采纳,获得10
3分钟前
4分钟前
YD发布了新的文献求助10
4分钟前
4分钟前
Dannnn发布了新的文献求助10
4分钟前
潇洒新筠发布了新的文献求助10
4分钟前
stuuuuuuuuuuudy完成签到 ,获得积分10
4分钟前
asdwind完成签到,获得积分10
5分钟前
little完成签到,获得积分10
5分钟前
喜悦的小土豆完成签到 ,获得积分10
5分钟前
loen完成签到,获得积分10
5分钟前
小二郎应助科研通管家采纳,获得10
6分钟前
6分钟前
yang完成签到,获得积分10
6分钟前
隐形曼青应助yang采纳,获得10
6分钟前
谨慎颜演完成签到 ,获得积分10
6分钟前
奋斗水香完成签到,获得积分10
7分钟前
牛八先生完成签到,获得积分10
7分钟前
加绒完成签到,获得积分10
7分钟前
Sesenta1发布了新的文献求助10
8分钟前
神勇朝雪完成签到,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777609
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212809
捐赠科研通 3038316
什么是DOI,文献DOI怎么找? 1667308
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758229