Aircraft target type recognition technology based on deep learning and structure feature matching

索贝尔算子 人工智能 模式识别(心理学) 计算机科学 计算机视觉 特征(语言学) 主成分分析 方向(向量空间) 特征提取 计算 边缘检测 支持向量机 图像(数学) 数学 图像处理 算法 语言学 哲学 几何学
作者
Haiyang Shen,Kui Huo,Xin Qiao,Chongzhi Li
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:45 (4): 5685-5696 被引量:3
标识
DOI:10.3233/jifs-232239
摘要

In order to solve the problems with the traditional aircraft target type recognition algorithm, such as difficulty in feature selection, weak generalization ability, slow recognition speed, and low recognition accuracy, this paper put forward a new method that could detect and recognize aircraft targets in aerial images quickly and accurately. The aircraft targets in the images were detected rapidly and located through YOLOv3-tiny, and after image denoising, shadow detection, and positioning, then we used the Sobel operator to calculate the edge gradient of the target; the image of the aircraft target was segmented by using the region growth method, and then the principal component analysis (PCA)was used to obtain the central axis of the aircraft target. The projected distance from the edge contour to the central axis was sampled at equal intervals along the direction of the central axis, and its ratio to the length of the central axis was calculated to construct the feature vector. Finally, the Spearman rank correlation method was used to match the feature vectors to realize the recognition of the aircraft type. Experiments showed that the proposed method had strong adaptability and small computation and could quickly detect and accurately recognize aircraft targets in aerial images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研废物发布了新的文献求助10
4秒前
6秒前
Orange应助scherbius321采纳,获得10
7秒前
jinxixi应助车间我采纳,获得10
7秒前
WFLLL发布了新的文献求助20
9秒前
DKL发布了新的文献求助10
11秒前
所所应助甜蜜浩然采纳,获得10
12秒前
汉堡包应助morena采纳,获得10
12秒前
14秒前
15秒前
15秒前
17秒前
19秒前
20秒前
睿籽发布了新的文献求助10
21秒前
21秒前
22秒前
光下澈发布了新的文献求助30
22秒前
24秒前
有使不完牛劲的正主完成签到 ,获得积分10
25秒前
巫马千秋完成签到,获得积分10
25秒前
scherbius321发布了新的文献求助10
25秒前
今后应助YCG采纳,获得10
26秒前
shmorby完成签到 ,获得积分10
26秒前
26秒前
DKL完成签到,获得积分10
27秒前
科研废物完成签到,获得积分20
27秒前
29秒前
29秒前
29秒前
29秒前
丘比特应助桃铁采纳,获得10
31秒前
暴龙战士发布了新的文献求助10
32秒前
千玺发布了新的文献求助10
32秒前
在水一方应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
搜集达人应助科研通管家采纳,获得10
33秒前
pcr163应助科研通管家采纳,获得50
33秒前
思源应助科研通管家采纳,获得30
34秒前
CipherSage应助科研通管家采纳,获得30
34秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910210
求助须知:如何正确求助?哪些是违规求助? 3455848
关于积分的说明 10885757
捐赠科研通 3181832
什么是DOI,文献DOI怎么找? 1758252
邀请新用户注册赠送积分活动 850713
科研通“疑难数据库(出版商)”最低求助积分说明 792176