Boosting the prediction accuracy of a process-based greenhouse climate-tomato production model by particle filtering and deep learning

可解释性 校准 温室 人工神经网络 均方误差 环境科学 计算机科学 机器学习 数学 统计 生物 园艺
作者
Xiaohan Zhou,Qingzhi Liu,David Katzin,Tian Qian,E. Heuvelink,L.F.M. Marcelis
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:211: 107980-107980 被引量:2
标识
DOI:10.1016/j.compag.2023.107980
摘要

By generating high quality data without the big time investment and economic cost of real experiments, dynamic greenhouse climate and crop simulation models can support decisions on greenhouse climate control, crop management and greenhouse design. The reliability of simulation-based decisions depends on both the prediction accuracy and interpretability of simulation models. The prediction accuracy of these simulation models can be increased by: 1) improving mechanisms in process-based models; 2) calibrating process-based model parameters; 3) deriving black-box relationships from data. Considering the descending interpretability from (1) to (3), this study presents a knowledge-based data-driven modelling approach where firstly a process-based model is selected and modified based on domain knowledge, then data-driven improvement is applied including two steps: parameter value estimation by particle filter (PF) and further black-box improvement by deep neural networks (DNN). The approach was tested with an example of greenhouse climate-tomato production system modelling. Modules from GreenLight (Katzin et al., 2020) and TOMSIM (Heuvelink, 1995, Heuvelink, 1996) were selected, modified and integrated into a process-based greenhouse climate-tomato model. Validation showed that PF-calibration of five greenhouse parameters decreased the seasonal relative root mean squared error (RRMSE) of indoor air vapor pressure predictions from 40.7% of that before PF-calibration to 16.4%, while it did not decrease the RRMSE of indoor air temperature predictions. Combining the PF-calibrated model with a DNN trained on a season of data decreased the RRMSE of indoor air temperature from 15.0% without DNN to 6.7%, and decreased the RRMSE of indoor air vapor pressure to 12.6%. The knowledge-based data-driven greenhouse climate-tomato model had a relative error of 0.9% for seasonal total fresh yield, and an RRMSE of 6.6% for the cumulative yield throughout the season. If process-based model parameters were not calibrated before combining the model with DNNs, the required amount and diversity of DNN training data increased because more information needed to be learnt from data by the DNNs. Without PF-calibration, combining a DNN trained on 50 days of data with the process-based model resulted in RRMSEs of 44.8% and 31.8% for indoor air temperature and vapor pressure prediction, respectively; with PF-calibration, the RRMSEs were decreased to 13.1% and 17.9%. The proposed three-step knowledge-based data-driven approach can not only improve the model prediction accuracy, but can also help to track and interpret the improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
清图完成签到,获得积分10
4秒前
5秒前
可爱小笼包完成签到,获得积分10
5秒前
tuzhifengyin完成签到,获得积分10
6秒前
Hello应助着急的小松鼠采纳,获得10
6秒前
浅浅完成签到 ,获得积分10
6秒前
8秒前
糜厉完成签到,获得积分10
8秒前
昭谏发布了新的文献求助10
8秒前
尤静柏发布了新的文献求助10
9秒前
yelv123完成签到,获得积分10
9秒前
科研通AI5应助手抓饼啊采纳,获得30
10秒前
10秒前
顺利兰完成签到 ,获得积分10
12秒前
蛮蛮发布了新的文献求助10
13秒前
内坻崿完成签到,获得积分10
13秒前
14秒前
南楼小阁主完成签到,获得积分10
15秒前
16秒前
swzzaf完成签到,获得积分10
19秒前
高兴荔枝发布了新的文献求助10
20秒前
铲铲完成签到,获得积分10
22秒前
zz完成签到 ,获得积分10
23秒前
研友_Z6QEAn应助俭朴千万采纳,获得10
23秒前
曾经的依风完成签到,获得积分10
24秒前
24秒前
小二郎应助小夏咕噜采纳,获得10
25秒前
成就的笑南完成签到 ,获得积分10
25秒前
笨笨芯举报Srishti求助涉嫌违规
26秒前
李子不是杏完成签到 ,获得积分10
26秒前
Dsxxx发布了新的文献求助10
30秒前
蛮蛮完成签到 ,获得积分10
30秒前
31秒前
俭朴千万完成签到,获得积分10
33秒前
在水一方应助无限的千凝采纳,获得10
34秒前
翟威发布了新的文献求助10
36秒前
研友_Lmb15n完成签到,获得积分10
38秒前
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779613
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221318
捐赠科研通 3040220
什么是DOI,文献DOI怎么找? 1668678
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535