Multiple Imputation by Chained Equations for Missing Data in UK Biobank

插补(统计学) 缺少数据 范畴变量 统计 随机森林 逻辑回归 线性回归 回归 计算机科学 回归分析 数学 计量经济学 数据挖掘 人工智能
作者
Liyuan Xu,Anqi Qiu
标识
DOI:10.1109/icdsba57203.2022.00026
摘要

UK Biobank is a large cohort study and faces missing data problems. The complexity of observations in this dataset, including noisy data, different missing rates, and the diversity of the data distributions and data types, results in the challenge of imputing missing data in the dataset. With the aim of addressing this issue and imputing missing values in UK Biobank, we propose an imputation framework based on prior knowledge and multiple imputation by chained equations (MICE), which consists of three parts: (1) Data cleaning for eliminating the interference of noisy data, (2) Correction of imputation illegibility for high missing rate subjects and low variance variables, and (3) MICE for imputing different types of independent variables. By comparing the imputation results of linear regression, linear regression with bootstrap, Bayesian linear regression, and random forest for continuous and categorical variables, we find that the best imputation model for continuous variables is linear regression, with the normalized mean absolute error (MAE) of 0.072+/-0.004 in the experiment of actual missing percentage, while the best imputation model for categorical variables is random forest, with the normalized MAE of 0.129+/-0.003. By comparing the imputation results of logistic regression, logistic regression with bootstrap, and random forest for binary variables, we find that the best imputation model is random forest, with the accuracy of 0.907+/-0.008 in the experiment of actual missing percentage. In addition, the data cleaning improves the imputation accuracy by 6.83% overall. The correction of high-missing rate variables is also a significant step, the imputation accuracy of all types of variables is 0.842+/- 0.006, 0.826+/-0.006, 0.793+/-0.005, 0.766+/-0.007, and 0.742+/- 0.006 when the missing percentage is 50%, 60%, 70%, 80%, and 90%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷迎波发布了新的文献求助10
刚刚
小鱼完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
Alex应助李禾和采纳,获得20
2秒前
食虫蚁完成签到 ,获得积分10
3秒前
香风智乃完成签到 ,获得积分10
3秒前
月亮也赖床完成签到,获得积分10
5秒前
dandan发布了新的文献求助10
5秒前
6秒前
丘比特应助新疆彭于晏采纳,获得10
6秒前
丘比特应助绝尘采纳,获得10
7秒前
lumeicheng完成签到 ,获得积分10
7秒前
10秒前
上官若男应助典雅的荣轩采纳,获得10
12秒前
13秒前
科研通AI5应助SongNan_Ding采纳,获得10
14秒前
982289172发布了新的文献求助10
15秒前
ZQ完成签到,获得积分10
17秒前
18秒前
充电宝应助李禾和采纳,获得10
18秒前
mw发布了新的文献求助10
19秒前
肖耶啵应助nnfreya采纳,获得10
21秒前
虚幻青曼发布了新的文献求助10
22秒前
smile完成签到,获得积分20
23秒前
24秒前
粗暴的遥完成签到,获得积分10
25秒前
溜溜完成签到,获得积分10
27秒前
dildil发布了新的文献求助30
27秒前
28秒前
小马甲应助绝尘采纳,获得10
29秒前
eirwyn发布了新的文献求助30
29秒前
30秒前
czq完成签到,获得积分10
30秒前
31秒前
溜溜发布了新的文献求助10
31秒前
31秒前
戴佳伟彩笔完成签到,获得积分10
31秒前
王啦啦完成签到,获得积分10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790825
求助须知:如何正确求助?哪些是违规求助? 3335732
关于积分的说明 10276358
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675079
邀请新用户注册赠送积分活动 803038
科研通“疑难数据库(出版商)”最低求助积分说明 761040