Predicting readmission after bariatric surgery using machine learning

医学 逻辑回归 外科 十二指肠开关 袖状胃切除术 接收机工作特性 胃分流术 减肥 内科学 肥胖
作者
Logan R. Butler,Kevin A. Chen,Justin Hsu,Muneera R. Kapadia,Shawn M. Gomez,Timothy M. Farrell
出处
期刊:Surgery for Obesity and Related Diseases [Elsevier BV]
卷期号:19 (11): 1236-1244 被引量:8
标识
DOI:10.1016/j.soard.2023.05.025
摘要

While bariatric surgery is an effective method for achieving long-term weight loss, postoperative readmissions are associated with negative clinical outcomes and significant costs.We aimed to use machine learning (ML) algorithms to predict readmissions and compare results to logistic regression.Hospitals participating in the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program, United States.Patients who underwent sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and biliopancreatic diversion with duodenal switch between 2016 and 2020 were selected from the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program (MBSAQIP) database. Patient variables reported by the MBSAQIP database were analyzed by ML algorithms random forest (RF), gradient boosting (XGB), and deep neural networks (NN), and the results of the predictive models were compared to logistic regression using area under the receiver operating characteristic curve (AUROC).Our study included 863,348 patients, of which 39,068 (4.52%) were readmitted. AUROC scores were XGB .785 (95% CI .784-.786), RF .785 (95% CI .784-.785), and NN .754 (95% CI .753-.754), compared with .62 (95% CI .62-.621) for logistic regression (LR) (P < .001). The sensitivity and specificity for XGB, the best performing model, were 73.81% and 70%, compared with 52.94% and 70% for logistic regression. The most important variables were intervention or reoperation prior to discharge, unplanned ICU admission, initial procedure, and the intraoperative transfusion.ML demonstrates significant advantages over logistic regression when predicting 30-day readmission following bariatric surgery. With external validation, models could identify the best candidates for early discharge or targeted postdischarge resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的醉山完成签到,获得积分10
1秒前
2秒前
六步郎完成签到,获得积分10
2秒前
lxcy0612完成签到,获得积分10
3秒前
3秒前
2010完成签到,获得积分10
3秒前
mingshi完成签到,获得积分10
3秒前
月月完成签到,获得积分10
4秒前
春天的粥完成签到 ,获得积分10
5秒前
6秒前
洁净的天德完成签到,获得积分10
7秒前
研友_Lpawrn发布了新的文献求助10
7秒前
Orange应助研友_5ZlY68采纳,获得10
7秒前
酥咸发布了新的文献求助10
8秒前
西海岸的风完成签到 ,获得积分10
8秒前
慧慧完成签到,获得积分10
8秒前
8秒前
9秒前
明理夏槐发布了新的文献求助10
9秒前
taster完成签到,获得积分10
11秒前
MrLiu完成签到,获得积分10
11秒前
13秒前
El发布了新的文献求助30
13秒前
研友_Lpawrn完成签到,获得积分10
13秒前
谦让寻凝完成签到 ,获得积分10
13秒前
lllllllll完成签到,获得积分10
14秒前
贼吖完成签到 ,获得积分10
14秒前
kento完成签到,获得积分0
14秒前
淡淡阁完成签到 ,获得积分10
15秒前
阿南完成签到 ,获得积分10
15秒前
能干戎完成签到,获得积分10
17秒前
kento发布了新的文献求助30
17秒前
石幻枫发布了新的文献求助10
18秒前
NexusExplorer应助El采纳,获得10
18秒前
Forest001发布了新的文献求助10
18秒前
shiqiang mu应助cici采纳,获得10
18秒前
研友_LMg3PZ发布了新的文献求助10
19秒前
zz完成签到 ,获得积分10
19秒前
虚幻谷秋完成签到,获得积分10
21秒前
埋头苦干科研完成签到,获得积分10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4143649
求助须知:如何正确求助?哪些是违规求助? 3679833
关于积分的说明 11628229
捐赠科研通 3372764
什么是DOI,文献DOI怎么找? 1852494
邀请新用户注册赠送积分活动 915203
科研通“疑难数据库(出版商)”最低求助积分说明 829702