亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Based Transonic Flutter Prediction Model for Multidisciplinary Design Optimization of Medium Range Truss Braced Wing Aircraft

颤振 跨音速 空气动力学 计算流体力学 多学科设计优化 气动弹性 工程类 航空航天工程 替代模型 计算机科学 航程(航空) 机翼外形 结构工程 模拟 多学科方法 机器学习 社会科学 社会学
作者
Kamrul Hasan Khan,Rakesh K. Kapania,Joseph A. Schetz
出处
期刊:AIAA Aviation 2019 Forum 被引量:1
标识
DOI:10.2514/6.2023-3944
摘要

View Video Presentation: https://doi.org/10.2514/6.2023-3944.vid This research focuses on the development and implementation of a deep-learning-based Transonic Flutter Constraint Model for the Multidisciplinary Design Optimization (MDO) of Truss-Braced Wing (TBW) aircraft. TBW configurations, as next-generation aircraft, demand accurate flutter analysis in the transonic flight regime. High-fidelity Computational Fluid Dynamics (CFD) methods, although accurate, are very computationally expensive and unsuitable for MDO. The study investigates the use of extended indicial function-based flutter analysis via aerodynamic strip theory for 3D wings as a potential replacement for CFD. However, this analytical method still entails significant computation time. As a solution, a deep-learning-based flutter model is developed as a surrogate for reducing computational costs. The research highlights the challenges of generating datasets for deep-learning-based flutter models and the implementation of the surrogate model within the MDO framework. Emphasis is placed on the importance of the deep-learning-based flutter model due to the significant time consumed by flutter analysis in structural modules during the design process. Results obtained from the MDO framework with the surrogate model reveal promising reduction of computational time in the prediction of flutter constraint for TBW design, showcasing the effectiveness of the proposed method. The the total wall-clock time of the new DNN method was reduced by 1500 times compared to the previous method. Overall, this study contributes to the development of more efficient and accurate MDO processes for TBW aircraft, paving the way for the future of sustainable aviation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bless完成签到 ,获得积分10
4秒前
11秒前
吴彦祖发布了新的文献求助10
18秒前
禾中丨小骨完成签到 ,获得积分10
42秒前
43秒前
souther完成签到,获得积分0
56秒前
1分钟前
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
xiaa0618完成签到 ,获得积分10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
1分钟前
无情洋葱发布了新的文献求助20
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
羊洋洋发布了新的文献求助10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助羊洋洋采纳,获得10
3分钟前
daguan完成签到,获得积分10
4分钟前
4分钟前
4分钟前
想飞的兔子完成签到,获得积分20
4分钟前
jeff完成签到,获得积分10
5分钟前
5分钟前
wpj发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
吴彦祖发布了新的文献求助10
6分钟前
002完成签到,获得积分10
7分钟前
7分钟前
7分钟前
WeiZhang发布了新的文献求助10
7分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4091726
求助须知:如何正确求助?哪些是违规求助? 3630417
关于积分的说明 11507594
捐赠科研通 3341860
什么是DOI,文献DOI怎么找? 1836930
邀请新用户注册赠送积分活动 904825
科研通“疑难数据库(出版商)”最低求助积分说明 822585