MWG-Net: Multiscale Wavelet Guidance Network for COVID-19 Lung Infection Segmentation From CT Images

小波 计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 比例(比率) 小波变换 编码器 计算机视觉 地图学 地理 操作系统
作者
Kai Hu,Hui Yuan Tan,Yuan Zhang,Wei Huang,Xieping Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:10
标识
DOI:10.1109/tim.2023.3265100
摘要

Recently, accurate segmentation of COVID-19 infection from computed tomography (CT) scans is critical for the diagnosis and treatment of COVID-19. However, infection segmentation is a challenging task due to various textures, sizes and locations of infections, low contrast, and blurred boundaries. To address these problems, we propose a novel Multi-scale Wavelet Guidance Network (MWG-Net) for COVID-19 lung infection by integrating the multi-scale information of wavelet domain into the encoder and decoder of the convolutional neural network (CNN). In particular, we propose the Wavelet Guidance Module (WGM) and Wavelet & Edge Guidance Module (WEGM). Among them, the WGM guides the encoder to extract infection details through the multi-scale spatial and frequency features in the wavelet domain, while the WEGM guides the decoder to recover infection details through the multi-scale wavelet representations and multi-scale infection edge information. Besides, a Progressive Fusion Module (PFM) is further developed to aggregate and explore multi-scale features of the encoder and decoder. Notably, we establish a COVID-19 segmentation dataset (named COVID-Seg-100) containing 5800+ annotated slices for performance evaluation. Furthermore, we conduct extensive experiments to compare our method with other state-of-the-art approaches on our COVID-19-Seg-100 and two publicly available datasets, i.e ., MosMedData and COVID-SemiSeg. The results show that our MWG-Net outperforms state-of-the-art methods on different datasets and can achieve more accurate and promising COVID-19 lung infection segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bear发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
情怀应助aba1采纳,获得10
1秒前
可心完成签到,获得积分10
2秒前
不知道完成签到,获得积分10
2秒前
SRsora完成签到,获得积分10
5秒前
糖糖发布了新的文献求助10
5秒前
5秒前
5秒前
bear完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
瘦瘦含玉完成签到,获得积分10
9秒前
LXx完成签到,获得积分10
10秒前
122啊发布了新的文献求助10
10秒前
明芬发布了新的文献求助10
11秒前
12秒前
fujun0095完成签到,获得积分10
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
大气无声发布了新的文献求助10
16秒前
17秒前
shen发布了新的文献求助10
17秒前
脑洞疼应助jiuwu采纳,获得10
18秒前
18秒前
19秒前
展锋发布了新的文献求助10
20秒前
22秒前
向往发布了新的文献求助10
22秒前
23秒前
lachine发布了新的文献求助10
24秒前
zy发布了新的文献求助10
25秒前
27秒前
研友_VZG7GZ应助靓仔采纳,获得10
29秒前
研友_LX62KZ发布了新的文献求助10
29秒前
29秒前
parny完成签到 ,获得积分10
30秒前
爆米花应助TAO采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679489
求助须知:如何正确求助?哪些是违规求助? 4990946
关于积分的说明 15169676
捐赠科研通 4839270
什么是DOI,文献DOI怎么找? 2593233
邀请新用户注册赠送积分活动 1546348
关于科研通互助平台的介绍 1504472