Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection

微流控 病菌 适体 计算生物学 微流控芯片 纳米技术 选择(遗传算法) 计算机科学 生物 材料科学 人工智能 微生物学 分子生物学
作者
Shao-Li Hong,Mengfan Zhang,Xuan Wang,Huihong Liu,Nangang Zhang,Man Tang,Wei Li
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:: 1-12 被引量:1
标识
DOI:10.1080/10408347.2023.2195940
摘要

The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助陈诗颖采纳,获得10
1秒前
justsoso完成签到,获得积分10
2秒前
尔东二三发布了新的文献求助10
3秒前
7秒前
9秒前
深山何处钟声鸣应助songjie采纳,获得10
11秒前
12秒前
12秒前
12秒前
12秒前
14秒前
清欢发布了新的文献求助10
14秒前
dent强发布了新的文献求助10
14秒前
15秒前
15秒前
LNN发布了新的文献求助10
16秒前
李言完成签到,获得积分10
16秒前
16秒前
18秒前
悠阳发布了新的文献求助10
18秒前
18秒前
19秒前
morena应助尔东二三采纳,获得30
20秒前
852应助尔东二三采纳,获得10
20秒前
李言发布了新的文献求助10
20秒前
Lczhou完成签到,获得积分10
21秒前
hnxxangel发布了新的文献求助10
22秒前
等风等你发布了新的文献求助10
24秒前
王喂喂哦啊嗯完成签到,获得积分10
24秒前
25秒前
27秒前
tong完成签到,获得积分10
27秒前
坚强的广山应助等风等你采纳,获得10
29秒前
sky123应助等风等你采纳,获得10
29秒前
sky123应助等风等你采纳,获得10
29秒前
Angelos完成签到,获得积分10
29秒前
30秒前
清欢完成签到,获得积分10
32秒前
33秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2476834
求助须知:如何正确求助?哪些是违规求助? 2140734
关于积分的说明 5456338
捐赠科研通 1864113
什么是DOI,文献DOI怎么找? 926663
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495819