Prevalence of Impurity Retention Mechanisms in Pharmaceutical Crystallizations

结晶 杂质 活性成分 相(物质) 格子(音乐) 化学 材料科学 化学工程 色谱法 化学物理 有机化学 工程类 生物信息学 物理 声学 生物
作者
Fredrik L. Nordström,E. B. Sirota,Clara Hartmanshenn,Thomas T. Kwok,Mitchell Paolello,Huayu Li,Vincent Abeyta,Tommasina Bramante,Emma Madrigal,Taylor Behre,Gerard Capellades
出处
期刊:Organic Process Research & Development [American Chemical Society]
卷期号:27 (4): 723-741 被引量:12
标识
DOI:10.1021/acs.oprd.3c00009
摘要

The rejection of process impurities from crystallizing products is an essential step for the purification of pharmaceutical drugs and for the isolation of active pharmaceutical ingredients with the right crystal quality attributes. While several impurity incorporation mechanisms have been reported in the literature, the frequency of those mechanisms in actual industrial processes is largely unknown. This work presents the outcome of a joint investigation by crystallization scientists from two pharmaceutical companies and an academic institution, on the prevalence of impurity retention mechanisms in cooling and antisolvent crystallizations. A total of 52 product-impurity pairs have been explored in detail using the so-called Solubility-Limited Impurity Purge (SLIP) test as the diagnostic tool to identify the underlying impurity retention mechanism of already crystallized materials with challenging impurities. The results show that formation of solid solutions is the most common mechanism, where the impurity and product are partially miscible in the solid state. In 73% of cases, only one solid solution phase was obtained in which the impurity became incorporated into the crystal lattice of the product (α phase). In 6% of the examples, two solid solution phases were obtained, where the second solid phase (β phase) comprised predominantly the impurity and the product was the minor component. The remaining impurity retention mechanisms (21%) are related to solid-state immiscible impurities that precipitated from solution resulting in a physical mixture between the product and the impurity. The reasons for the results are discussed through a comprehensive analysis of theoretical reported retention mechanisms, which includes physical constraints for the scale-up of isolation processes, thermodynamic assessments using ternary phase diagrams, and restrictions in the context of current pharmaceutical syntheses of small organic molecules. Three industrial case studies are presented that exemplify how knowledge of the retention mechanisms can be used to delineate appropriate strategies for process design and to effectively purge these impurities during crystallization or washing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上凤关注了科研通微信公众号
1秒前
慕青应助爱科研的小冀采纳,获得10
1秒前
徐淇淇完成签到 ,获得积分10
1秒前
英俊的铭应助甜甜小蜜蜂采纳,获得10
2秒前
3秒前
3秒前
Aowu应助七月采纳,获得10
4秒前
Lucas应助淑婷采纳,获得10
4秒前
黎明发布了新的文献求助10
4秒前
7秒前
cfffff完成签到,获得积分10
7秒前
彭于晏应助司空元正采纳,获得10
8秒前
vivre223完成签到,获得积分10
8秒前
11秒前
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
淑婷完成签到,获得积分10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
14秒前
14秒前
李健的小迷弟应助dava采纳,获得10
15秒前
打打应助梁政研采纳,获得10
15秒前
科研通AI5应助要没时间了采纳,获得10
16秒前
淑婷发布了新的文献求助10
17秒前
17秒前
沈星燃完成签到,获得积分10
17秒前
科研通AI5应助小救星小杜采纳,获得10
17秒前
19秒前
小浪浪发布了新的文献求助10
19秒前
VictorySaber完成签到,获得积分10
21秒前
科研通AI5应助可靠的子默采纳,获得10
22秒前
爱与和平完成签到,获得积分10
22秒前
拖拖完成签到,获得积分10
22秒前
FFFFF发布了新的文献求助10
23秒前
24秒前
24秒前
科研通AI5应助ardejiang采纳,获得10
25秒前
FashionBoy应助冷傲的柜子采纳,获得10
28秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303