已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transferable machine learning approach for predicting electronic structures of charged defects

计算机科学 材料科学 纳米技术
作者
Yuxing Ma,Hongyu Yu,Yang Zhong,Shiyou Chen,Xingao Gong,Hongjun Xiang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:126 (4)
标识
DOI:10.1063/5.0242683
摘要

The study of electronic properties of charged defects plays a crucial role in advancing our understanding of how defects influence conductivity, magnetism, and optical behavior in various materials. However, despite its significance, research on large-scale defective systems has been hindered by the high computational cost associated with density functional theory (DFT). In this study, we propose HamGNN-Q, an E(3) equivariant graph neural network framework capable of accurately predicting DFT Hamiltonian matrices for diverse point defects with varying charges, utilizing a unified set of network weights. By incorporating background charge features into the element representation, HamGNN-Q facilitates a direct mapping from structural characteristics and background charges to the electronic Hamiltonian matrix of charged defect systems, obviating the need for DFT calculations. We showcase the model's high precision and transferability by evaluating its performance on GaAs systems encompassing diverse charged defect configurations. Furthermore, we predicted the wave function distribution of polarons induced by defects. We analyzed the node features through principal component analysis, providing physical insights for the interpretability of the HamGNN-Q model. Our approach provides a practical solution for accelerating electronic structure calculations of neutral and charged defects and advancing the design of materials with tailored electronic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿元发布了新的文献求助10
4秒前
4秒前
6秒前
hwq完成签到,获得积分10
7秒前
苹果白凡完成签到,获得积分10
9秒前
占乐枫发布了新的文献求助10
11秒前
善良的西瓜完成签到 ,获得积分10
12秒前
优雅的大橙子完成签到,获得积分20
12秒前
mashichuang发布了新的文献求助10
13秒前
阿元完成签到,获得积分10
15秒前
Yuy完成签到,获得积分10
20秒前
传奇3应助优雅的大橙子采纳,获得20
21秒前
桃子完成签到 ,获得积分10
21秒前
烟花应助伶俐映真采纳,获得10
22秒前
周周发布了新的文献求助10
23秒前
tuckahoe完成签到 ,获得积分10
27秒前
颜陌完成签到,获得积分10
29秒前
华仔应助石愚志采纳,获得10
30秒前
31秒前
FFFFF完成签到 ,获得积分10
32秒前
楠楠2001完成签到 ,获得积分10
34秒前
大模型应助羊毛毛衣采纳,获得30
35秒前
123完成签到 ,获得积分10
37秒前
听南发布了新的文献求助10
38秒前
xxx完成签到,获得积分10
39秒前
Zhang完成签到 ,获得积分10
42秒前
犹豫梦旋完成签到,获得积分10
48秒前
For-t-完成签到 ,获得积分10
48秒前
50秒前
瘦瘦绮完成签到 ,获得积分10
51秒前
微笑的铸海完成签到 ,获得积分10
51秒前
53秒前
桐桐应助小黑板采纳,获得10
53秒前
53秒前
55秒前
56秒前
58秒前
59秒前
羊毛毛衣发布了新的文献求助30
1分钟前
FrozNineTivus完成签到,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815679
求助须知:如何正确求助?哪些是违规求助? 3359287
关于积分的说明 10401909
捐赠科研通 3077048
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694