Enhanced Conductivity of Multilayer Copper–Carbon Nanofilms via Plasma Immersion Deposition

电导率 材料科学 电阻率和电导率 碳纤维 复合数 电极 复合材料 纳米技术 冶金 化学 电气工程 工程类 物理化学
作者
Haotian Weng,X. B. Zhang,Xuan Liu,Yunhui Tang,Hewei Yuan,Xu Yang,Kun Li,Xiaolu Huang
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:17 (1)
标识
DOI:10.1007/s40820-024-01628-6
摘要

Abstract Although room-temperature superconductivity is still difficult to achieve, researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency, reducing costs, lightening equipment weight, and enhancing overall performance. Herein, this study presents a novel copper–carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment. Multilayer copper–carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology, effectively enhancing conductivity. Experimental results show that for a five-layer copper–carbon nanofilm composite, the conductivity improves significantly when the thickness of the carbon nanofilm increases. When the carbon nanofilm accounts for 16% of the total thickness, the overall conductivity increases up to 30.20% compared to pure copper. The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory, first-principles calculations and density of states analysis. Under an applied electric field, the high-density electrons in the copper film can migrate into the nanocarbon film, forming highly efficient electron transport channels, which significantly enhance the material’s conductivity. Finally, large-area electrode coating equipment is developed based on this study, providing the novel and robust strategy to enhance the conductivity of copper materials, which enables industrial application of copper–carbon nanocomposite films in the field of high conductivity materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麋鹿完成签到 ,获得积分10
刚刚
真实的枫完成签到,获得积分10
2秒前
汉堡包应助璇22采纳,获得10
3秒前
turbohero完成签到,获得积分10
4秒前
田田田田发布了新的文献求助10
4秒前
JamesPei应助2233采纳,获得10
4秒前
Luu完成签到 ,获得积分10
5秒前
5秒前
5秒前
英俊的晟睿完成签到,获得积分10
5秒前
6秒前
天天快乐应助洁净的衫采纳,获得10
7秒前
8秒前
唐潇潇完成签到 ,获得积分10
8秒前
Tao发布了新的文献求助10
9秒前
hkhk完成签到,获得积分10
11秒前
bingbing发布了新的文献求助20
11秒前
木头杨发布了新的文献求助10
11秒前
傲娇如天发布了新的文献求助10
11秒前
12秒前
哎呀妈呀完成签到,获得积分10
13秒前
隐形曼青应助Z.采纳,获得10
15秒前
李健应助缥缈傥采纳,获得10
16秒前
RenL完成签到,获得积分10
18秒前
May发布了新的文献求助10
18秒前
丘比特应助随心采纳,获得10
19秒前
Orange应助小巧紊采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
dd发布了新的文献求助10
20秒前
20秒前
22秒前
23秒前
唐潇潇关注了科研通微信公众号
23秒前
宝哥完成签到,获得积分10
23秒前
momo完成签到,获得积分10
24秒前
shuibuzhao完成签到 ,获得积分10
25秒前
25秒前
DJ发布了新的文献求助10
26秒前
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3525972
关于积分的说明 11229581
捐赠科研通 3263807
什么是DOI,文献DOI怎么找? 1801681
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767