Enhanced Conductivity of Multilayer Copper–Carbon Nanofilms via Plasma Immersion Deposition

电导率 材料科学 电阻率和电导率 碳纤维 复合数 电极 复合材料 纳米技术 冶金 化学 电气工程 工程类 物理化学
作者
Haotian Weng,X. B. Zhang,Xuan Liu,Yunhui Tang,Hewei Yuan,Xu Yang,Kun Li,Xiaolu Huang
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:17 (1)
标识
DOI:10.1007/s40820-024-01628-6
摘要

Abstract Although room-temperature superconductivity is still difficult to achieve, researching materials with electrical conductivity significantly higher than that of copper will be of great importance in improving energy efficiency, reducing costs, lightening equipment weight, and enhancing overall performance. Herein, this study presents a novel copper–carbon nanofilm composite with enhanced conductivity which has great applications in the electronic devices and electrical equipment. Multilayer copper–carbon nanofilms and interfaces with superior electronic structures are formed based on copper materials using plasma immersion nanocarbon layer deposition technology, effectively enhancing conductivity. Experimental results show that for a five-layer copper–carbon nanofilm composite, the conductivity improves significantly when the thickness of the carbon nanofilm increases. When the carbon nanofilm accounts for 16% of the total thickness, the overall conductivity increases up to 30.20% compared to pure copper. The mechanism of the enhanced conductivity is analyzed including roles of copper atom adsorption sites and electron migration pathways by applying effective medium theory, first-principles calculations and density of states analysis. Under an applied electric field, the high-density electrons in the copper film can migrate into the nanocarbon film, forming highly efficient electron transport channels, which significantly enhance the material’s conductivity. Finally, large-area electrode coating equipment is developed based on this study, providing the novel and robust strategy to enhance the conductivity of copper materials, which enables industrial application of copper–carbon nanocomposite films in the field of high conductivity materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助splaker7采纳,获得10
刚刚
刚刚
小蘑菇应助威武冷雪采纳,获得10
刚刚
追梦远行人完成签到 ,获得积分10
1秒前
开心飞烟完成签到,获得积分10
1秒前
2秒前
杯水还茶发布了新的文献求助10
3秒前
bc应助白夜采纳,获得30
3秒前
Galaxy8完成签到,获得积分10
3秒前
O已w时o发布了新的文献求助10
4秒前
默默发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
tingtingting完成签到,获得积分10
7秒前
小樱桃发布了新的文献求助10
8秒前
LANGYE发布了新的文献求助10
11秒前
13秒前
13秒前
17秒前
mao应助科研通管家采纳,获得50
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
18秒前
花笙米发布了新的文献求助10
18秒前
Xu发布了新的文献求助30
18秒前
冰箱里的鸡蛋完成签到,获得积分10
18秒前
cdercder应助鑫鑫采纳,获得10
19秒前
19秒前
19秒前
20秒前
20秒前
QWE发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791491
求助须知:如何正确求助?哪些是违规求助? 3335911
关于积分的说明 10277959
捐赠科研通 3052606
什么是DOI,文献DOI怎么找? 1675161
邀请新用户注册赠送积分活动 803188
科研通“疑难数据库(出版商)”最低求助积分说明 761111