DeepGlioSeg: advanced glioma MRI data segmentation with integrated local-global representation architecture

分割 计算机科学 人工智能 特征(语言学) 深度学习 源代码 胶质瘤 模式识别(心理学) 语言学 生物 操作系统 哲学 癌症研究
作者
Ruipeng Li,Yuehui Liao,Yueqi Huang,Xiaofei Ma,Guohua Zhao,Yanbin Wang,Song Chen
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:15: 1449911-1449911 被引量:3
标识
DOI:10.3389/fonc.2025.1449911
摘要

Introduction Glioma segmentation is vital for diagnostic decision-making, monitoring disease progression, and surgical planning. However, this task is hindered by substantial heterogeneity within gliomas and imbalanced region distributions, posing challenges to existing segmentation methods. Methods To address these challenges, we propose the DeepGlioSeg network, a U-shaped architecture with skip connections for continuous contextual feature integration. The model includes two primary components. First, a CTPC (CNN-Transformer Parallel Combination) module leverages parallel branches of CNN and Transformer networks to fuse local and global features of glioma images, enhancing feature representation. Second, the model computes a region-based probability by comparing the number of pixels in tumor and background regions and assigns greater weight to regions with lower probabilities, thereby focusing on the tumor segment. Test-time augmentation (TTA) and volume-constrained (VC) post-processing are subsequently applied to refine the final segmentation outputs. Results Extensive experiments were conducted on three publicly available glioma MRI datasets and one privately owned clinical dataset. The quantitative and qualitative findings consistently show that DeepGlioSeg achieves superior segmentation performance over other state-of-the-art methods. Discussion By integrating CNN- and Transformer-based features in parallel and adaptively emphasizing underrepresented tumor regions, DeepGlioSeg effectively addresses the challenges associated with glioma heterogeneity and imbalanced region distributions. The final pipeline, augmented with TTA and VC post-processing, demonstrates robust segmentation capabilities. The source code for this work is publicly available at https://github.com/smallboy-code/Brain-tumor-segmentation .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cmqq发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
3秒前
幸运儿完成签到,获得积分10
4秒前
John_Xiong发布了新的文献求助10
4秒前
4秒前
hulala关注了科研通微信公众号
4秒前
季承渊发布了新的文献求助10
5秒前
大模型应助呃呃采纳,获得10
5秒前
我是老大应助晨曦采纳,获得30
6秒前
林柒完成签到 ,获得积分10
6秒前
xuke完成签到,获得积分10
6秒前
6秒前
刘丰铭发布了新的文献求助10
6秒前
xiaoman完成签到,获得积分10
6秒前
何东玲完成签到,获得积分20
6秒前
大糖糕僧发布了新的文献求助10
6秒前
Jasper应助尹晨熙采纳,获得10
7秒前
7秒前
7秒前
善学以致用应助Cmqq采纳,获得10
8秒前
8秒前
8秒前
研友_nqr2pZ发布了新的文献求助10
8秒前
坦率白萱发布了新的文献求助10
9秒前
youngcy发布了新的文献求助10
9秒前
顾矜应助烨爷采纳,获得10
9秒前
9秒前
10秒前
花源应助顺心紫翠采纳,获得10
12秒前
12秒前
好好学习天天向上完成签到,获得积分10
12秒前
千山完成签到,获得积分10
12秒前
翻似烂柯人完成签到,获得积分10
12秒前
13秒前
侯_完成签到,获得积分10
13秒前
moninaaaaa发布了新的文献求助10
13秒前
合适的芸遥完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002