亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning model for carotid plaques detection based on CTA images: a two stepwise early-stage clinical validation study

医学 阶段(地层学) 放射科 召回 分割 人工智能 核医学 计算机科学 古生物学 生物 哲学 语言学
作者
Zhongping Guo,Ying Liu,Jingxu Xu,Chencui Huang,Fandong Zhang,Chongchang Miao,Yonggang Zhang,Mengshuang Li,Hangsheng Shan,Yan Gu
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:15 被引量:1
标识
DOI:10.3389/fneur.2024.1480792
摘要

Objective To develop a deep learning (DL) model for carotid plaque detection based on CTA images and evaluate the clinical application feasibility and value of the model. Methods We retrospectively collected data from patients with carotid atherosclerotic plaques who underwent continuous CTA examinations of the head and neck at a tertiary hospital from October 2020 to October 2022. The model combined ResUNet with the Pyramid Scene Parsing Network (PSPNet) to enhance plaque segmentation. Patient plaques were divided into training, validation, and testing sets in a ratio of 7:1.5:1.5. We analyzed recall (lesion-level sensitivity), sensitivity (patient-level), and precision to evaluate the model’s diagnostic performance for carotid plaques. The two stepwise early-stage clinical validation study (Comparison study and Model-human study) was used to simulate real clinical plaque diagnostic scenarios. Results In total, 647 patients were included in the dataset, including 475 for training, 86 for validation, and 86 for testing. The DL model based on CTA images showed good precision in plaque diagnosis (validation set: precision = 80.49%, sensitivity = 90.70%, recall = 84.62%; test set: precision = 78.37%, sensitivity = 91.86%, recall = 84.58%). In addition, subgroup analysis of the plaque was carried out in the test set. The model had high accuracy in identifying plaques at different locations (Recall: 83.72, 76.32, 89.25, and 83.02%) and with different morphologies (Recall: 86.03, 79.17%). This model also analyzed the results of different types of plaques and showed good to moderate plaque diagnostic accuracy for different plaque types (Recall: 70.00, 86.87, 84.29%). Especially, in the clinical application scenario analysis, the model’s diagnostic results for plaques were found to be higher than those of 4 out of 6 radiologists ( p < 0.001). Furthermore, in Model-human Real Clinical Scenarios study, we found that the model improved the radiologists’ sensitivity in diagnosing plaques. Additionally, the model’s diagnostic time for plaques (6 s) was found to be significantly shorter than that all of radiologists ( p < 0.001). Conclusion This AI model demonstrated strong clinical potential for carotid plaque detection with improved clinician diagnostic performance, shortening time, and practical implementation in real-world clinical cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枫威完成签到 ,获得积分10
8秒前
Nancy0818完成签到 ,获得积分10
27秒前
迷茫的一代完成签到,获得积分10
28秒前
1分钟前
铜锈发布了新的文献求助10
1分钟前
铜锈完成签到,获得积分10
1分钟前
1分钟前
沉沉完成签到 ,获得积分0
1分钟前
tongtong555完成签到 ,获得积分10
2分钟前
JamesPei应助默默的紫真采纳,获得10
2分钟前
3分钟前
打打应助盼盼采纳,获得10
3分钟前
3分钟前
默默的紫真完成签到,获得积分10
3分钟前
诸葛小哥哥完成签到 ,获得积分0
3分钟前
大模型应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
4分钟前
李健应助sclorry采纳,获得10
5分钟前
Johnny完成签到 ,获得积分10
5分钟前
5分钟前
Feng5945完成签到 ,获得积分10
7分钟前
希望天下0贩的0应助JHY采纳,获得10
7分钟前
7分钟前
小盒发布了新的文献求助10
7分钟前
满意的伊发布了新的文献求助10
7分钟前
小盒完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
量子星尘发布了新的文献求助50
7分钟前
8分钟前
许12发布了新的文献求助10
8分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
8分钟前
科研通AI6应助许12采纳,获得10
8分钟前
小树叶完成签到 ,获得积分10
9分钟前
10分钟前
Chen完成签到 ,获得积分10
10分钟前
自信号厂完成签到 ,获得积分0
11分钟前
lukasaaa完成签到,获得积分10
11分钟前
思源应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Proposals That Work: A Guide for Planning Dissertations and Grant Proposals 888
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4706352
求助须知:如何正确求助?哪些是违规求助? 4072629
关于积分的说明 12592759
捐赠科研通 3773738
什么是DOI,文献DOI怎么找? 2084708
邀请新用户注册赠送积分活动 1111765
科研通“疑难数据库(出版商)”最低求助积分说明 989541