亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based body composition analysis from whole-body magnetic resonance imaging to predict all-cause mortality in a large western population

磁共振成像 医学 人口 脂肪组织 队列 全身成像 内科学 放射科 环境卫生
作者
Matthias Jung,Vineet K. Raghu,Marco Reisert,H. Rieder,Susanne Rospleszcz,Tobias Pischon,Thoralf Niendorf,Hans-Ulrich Kauczor,Henry Völzke,Robin Bülow,Maximilian Frederik Russe,Christopher L. Schlett,Michael T. Lu,Fabian Bamberg,Jakob Weiss
出处
期刊:EBioMedicine [Elsevier]
卷期号:110: 105467-105467 被引量:10
标识
DOI:10.1016/j.ebiom.2024.105467
摘要

SummaryBackgroundManually extracted imaging-based body composition measures from a single-slice area (A) have shown associations with clinical outcomes in patients with cardiometabolic disease and cancer. With advances in artificial intelligence, fully automated volumetric (V) segmentation approaches are now possible, but it is unknown whether these measures carry prognostic value to predict mortality in the general population. Here, we developed and tested a deep learning framework to automatically quantify volumetric body composition measures from whole-body magnetic resonance imaging (MRI) and investigated their prognostic value to predict mortality in a large Western population.MethodsThe framework was developed using data from two large Western European population-based cohort studies, the UK Biobank (UKBB) and the German National Cohort (NAKO). Body composition was defined as (i) subcutaneous adipose tissue (SAT), (ii) visceral adipose tissue (VAT), (iii) skeletal muscle (SM), SM fat fraction (SMFF), and (iv) intramuscular adipose tissue (IMAT). The prognostic value of the body composition measures was assessed in the UKBB using Cox regression analysis. Additionally, we extracted body composition areas for every level of the thoracic and lumbar spine (i) to compare the proposed volumetric whole-body approach to the currently established single-slice area approach on the height of the L3 vertebra and (ii) to investigate the correlation between volumetric and single slice area body composition measures on the level of each vertebral body.FindingsIn 36,317 UKBB participants (mean age 65.1 ± 7.8 years, age range 45–84 years; 51.7% female; 1.7% [634/36,471] all-cause deaths; median follow-up 4.8 years), Cox regression revealed an independent association between VSM (adjusted hazard ratio [aHR]: 0.88, 95% confidence interval [CI] [0.81–0.91], p = 0.00023), VSMFF (aHR: 1.06, 95% CI [1.02–1.10], p = 0.0043), and VIMAT (aHR: 1.19, 95% CI [1.05–1.35], p = 0.0056) and mortality after adjustment for demographics (age, sex, BMI, race) and cardiometabolic risk factors (alcohol consumption, smoking status, hypertension, diabetes, history of cancer, blood serum markers). This association was attenuated when using traditional single-slice area measures. Highest correlation coefficients (R) between volumetric and single-slice area body composition measures were located at vertebra L5 for SAT (R = 0.820) and SMFF (R = 0.947), at L3 for VAT (R = 0.892), SM (R = 0.944), and at L4 for IMAT (R = 0.546) (all p < 0.0001). A similar pattern was found in 23,725 NAKO participants (mean age 53.9 ± 8.3 years, age range 40–75; 44.9% female).InterpretationAutomated volumetric body composition assessment from whole-body MRI predicted mortality in a large Western population beyond traditional clinical risk factors. Single slice areas were highly correlated with volumetric body composition measures but their association with mortality attenuated after multivariable adjustment. As volumetric body composition measures are increasingly accessible using automated techniques, identifying high-risk individuals may help to improve personalised prevention and lifestyle interventions.FundingThis project was conducted using data from the German National Cohort (NAKO) (www.nako.de). The NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers: 01ER1301A/B/C, 01ER1511D, and 01ER1801A/B/C/D], federal states of Germany and the Helmholtz Association, the participating universities and the institutes of the Leibniz Association. This research has been conducted using the UK Biobank Resource under Application Number 80337. MJ was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-518480401. VKR was funded by American Heart Association Career Development Award 935176 and National Heart, Lung, and Blood Institute-K01HL168231.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
Criminology34应助科研通管家采纳,获得10
30秒前
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
天天发布了新的文献求助10
36秒前
1分钟前
jyy完成签到,获得积分10
1分钟前
1分钟前
学生信的大叔完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Qing完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
从前的我完成签到 ,获得积分10
2分钟前
Wa1Zh0u发布了新的文献求助10
2分钟前
2分钟前
研友_Zb17ln发布了新的文献求助10
3分钟前
null应助研友_Zb17ln采纳,获得10
3分钟前
3分钟前
SDNUDRUG完成签到,获得积分10
3分钟前
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
wggggggy发布了新的文献求助10
4分钟前
思源应助zone54188采纳,获得10
4分钟前
清风明月完成签到 ,获得积分10
4分钟前
haprier完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
今后应助无情的琳采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724022
求助须知:如何正确求助?哪些是违规求助? 5283494
关于积分的说明 15299539
捐赠科研通 4872214
什么是DOI,文献DOI怎么找? 2616665
邀请新用户注册赠送积分活动 1566557
关于科研通互助平台的介绍 1523402