Cognition‐related Network Organization in Parkinson's Disease with Mild Cognitive Impairment and Dementia

痴呆 认知 神经心理学 心理学 威斯康星卡片分类测试 听力学 神经科学 医学 内科学 疾病
作者
Yoshikazu Nakano,An Vo,Nha Nguyen,Chris C. Tang,David Eidelberg
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.084270
摘要

Abstract Background The Parkinson's disease (PD) cognition‐related covariance pattern (PDCP) was derived from network analysis of metabolic positron emission tomography (PET). The expression score is a feasible imaging biomarker that correlates with neuropsychological test performance. Graph analysis within specific networks characterizes brain function, particularly in terms of assortativity, which reflects the tendency to connect to nodes with similar degree values. However, PDCP assortativity is unclear. Methods A total of 102 patients with PD underwent neuropsychological testing and [ 18 F]‐fluorodeoxyglucose PET. Patients scoring less than 130 on the Dementia Rating Scale‐2 (DRS‐2) were classified as having PD with dementia (PDD). PD with mild cognitive impairment in single or multiple functions (sMCI or mMCI) was defined as having one (sMCI) or two or more (mMCI) of the following criteria: DRS‐2 subscore (Attention < 35, Initiation/Perseveration < 35, Construction < 6, Conceptualization < 35, Memory < 24), Wisconsin Card Sorting Test < 13 (executive), Hooper Visual Organization Test < 30 (visuospatial), and Boston Naming Test < 48 (language). The others were defined as having normal cognition (PD‐NC). We identified 35 anatomical regions of interest (ROIs) as nodes corresponding to the PDCP network. The pairwise correlation at each node of normalized metabolic activity derived from FDG‐PET data was calculated in each group by 100 bootstrapping iterations. The assortativity coefficient was calculated as the Pearson correlation coefficient of degrees between connected node pairs. Group differences were tested by repeated measures analysis of variance as group and threshold coefficients. Results There were 22 PD‐NC, 24 sMCI, 31 mMCI, and 25 PDD. Demographic data are shown in Table 1. PDCP assortativity showed no significant differences between PD‐NC and sMCI (P = 0.23). However, it was increased in mMCI and PDD compared to PD‐NC and sMCI (P < 0.01). In addition, it was higher in PDD than in mMCI (P < 0.001) (Figure 1). Conclusions Assortativity in the PDCP network is a potential predictor of the transition from MCI to dementia in PD patients. Furthermore, patients with cognitive impairment in multiple functions are at risk of developing dementia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Happy完成签到 ,获得积分10
1秒前
斯文白梅发布了新的文献求助10
1秒前
小飞发布了新的文献求助10
2秒前
清新的沛蓝完成签到,获得积分10
2秒前
大模型应助LL采纳,获得10
2秒前
脑洞疼应助YYy采纳,获得10
2秒前
CodeCraft应助清脆乐曲采纳,获得10
3秒前
Fengliguantou发布了新的文献求助10
3秒前
5秒前
可爱的婷完成签到,获得积分10
5秒前
7秒前
7秒前
泠涣1完成签到 ,获得积分10
8秒前
华仔应助斯文白梅采纳,获得10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助50
10秒前
lang完成签到,获得积分10
11秒前
bertha325发布了新的文献求助10
11秒前
wjw完成签到,获得积分10
12秒前
李宏梅完成签到,获得积分10
12秒前
12秒前
13秒前
wk发布了新的文献求助10
13秒前
13秒前
14秒前
wei完成签到,获得积分10
14秒前
15秒前
15秒前
执着半烟完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
ccc发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助20
19秒前
Fengliguantou完成签到,获得积分10
19秒前
CipherSage应助HongMou采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664940
求助须知:如何正确求助?哪些是违规求助? 4046277
关于积分的说明 12515223
捐赠科研通 3738731
什么是DOI,文献DOI怎么找? 2064808
邀请新用户注册赠送积分活动 1094319
科研通“疑难数据库(出版商)”最低求助积分说明 974773