图形
计算生物学
计算机科学
数据集成
生物
数据挖掘
理论计算机科学
作者
Xingyu Liao,Yanyan Li,Shuangyi Li,Wen Long,Xingyi Li,Bin Yu
标识
DOI:10.1021/acssynbio.4c00864
摘要
The continuous advancement of single-cell multimodal omics (scMulti-omics) technologies offers unprecedented opportunities to measure various modalities, including RNA expression, protein abundance, gene perturbation, DNA methylation, and chromatin accessibility at single-cell resolution. These advances hold significant potential for breakthroughs by integrating diverse omics modalities. However, the data generated from different omics layers often face challenges due to high dimensionality, heterogeneity, and sparsity, which can adversely impact the accuracy and efficiency of data integration analyses. To address these challenges, we propose a high-precision analysis method called scMGAT (single-cell multiomics data analysis based on multihead graph attention networks). This method effectively coordinates reliable information across multiomics data sets using a multihead attention mechanism, allowing for better management of the heterogeneous characteristics inherent in scMulti-omics data. We evaluated scMGAT's performance on eight sets of real scMulti-omics data, including samples from both human and mouse. The experimental results demonstrate that scMGAT significantly enhances the quality of multiomics data and improves the accuracy of cell-type annotation compared to state-of-the-art methods. scMGAT is now freely accessible at https://github.com/Xingyu-Liao/scMGAT.
科研通智能强力驱动
Strongly Powered by AbleSci AI