材料科学
纳米纤维素
纳米纤维
弹性体
超分子化学
纤维素
复合材料
复合数
氢键
细菌纤维素
自愈
聚己内酯
结晶
纳米技术
化学工程
聚合物
分子
医学
化学
替代医学
有机化学
病理
工程类
作者
Tianhao Wu,Hao Jiang,Yujing Zheng,Chunyao Zhao,Keyu Shi,Kangcheng Xu,Xiaodong Li,Meishuai Zou
标识
DOI:10.1002/adfm.202414221
摘要
Abstract Inspired by biological mechanisms of impact protection, nanocellulose and linear polyurethane molecular chains are simultaneously tailored and expanded using supramolecular chemistry. This approach has led to the development of a novel impact protection strategy that leverages multilevel hydrogen bonding interactions. These abundant interactions effectively hinder the crystallization of polycaprolactone (PCL) chain segments, resulting in uniformly distributed microphase separation. This configuration achieves a significant fracture strength of 47.5 MPa, while maintaining an exceptional elongation at a break of 974.2%. The results demonstrate that supramolecular polyurethane‐cellulose nanofiber (SPU‐CNF) elastomer significantly reduces impact force and extends the impact buffer time. Crucially, the underlying mechanisms responsible for energy dissipation and impact protection in SPU‐CNF are elucidated. To validate these properties, impact protection tests at varying impact rates are conducted, underscoring the potential applications of the proposed SPU‐CNF in impact‐resistant materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI