ANN material modeling for SMA fibers enhanced with a physical constraint and its application to FE computations

形状记忆合金* 形状记忆合金 人工神经网络 计算 切线 计算机科学 有限元法 过程(计算) 变形(气象学) 约束(计算机辅助设计) 前馈 材料性能 机械工程 结构工程 控制工程 人工智能 算法 材料科学 工程类 数学 几何学 复合材料 操作系统
作者
Patrick Weber,Werner Wagner,Steffen Freitag
出处
期刊:Computational Mechanics [Springer Nature]
卷期号:76 (1): 93-116
标识
DOI:10.1007/s00466-024-02590-1
摘要

Abstract So-called shape memory alloys (SMAs) show intriguing multi-physical and history-dependent behavior. This includes most prominently the recovery of their initial shape after inelastic deformation, if the temperature is increased afterwards. This is known as the shape memory effect. The precise and reliable description of this and other SMA phenomena is crucial for industrial applications. Therefore, in addition to the wide range of analytical material models for SMA, we want to apply the material modeling strategy with artificial neural networks (ANN) to SMAs. We define an ANN material model in order to represent the SMA behavior with a feedforward ANN. Therefore, the correct setup of input and output vectors for rate-independent material behavior is investigated. The training is done based on synthetic data. The resulting SMA ANN material model is able to represent the SMA strain–stress behavior generally, for arbitrary strain and temperature fields. The resulting one-dimensional ANN material model is used within finite element computations. This increases the accuracy requirements due to the need for a material tangent. Therefore, we improve the performance of the ANN material model in terms of numerical stability by enforcing a material tangent related constraint during the ANN training process. In order to evaluate the performance of ANN material models during training reliably for these accuracy requirements, in depth studies on different target variables during the training process are done.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qingmoheng应助shuxiansheng采纳,获得10
刚刚
1秒前
mineng发布了新的文献求助10
1秒前
1秒前
DKY完成签到,获得积分10
1秒前
AIAIAIAIAIAI发布了新的文献求助10
1秒前
1秒前
cghmfgh发布了新的文献求助20
2秒前
2秒前
小布完成签到,获得积分20
2秒前
3秒前
3秒前
薄荷完成签到 ,获得积分10
3秒前
霸气乐菱发布了新的文献求助10
3秒前
3秒前
xanderxue完成签到,获得积分10
3秒前
8941完成签到 ,获得积分10
5秒前
Moonchild发布了新的文献求助10
5秒前
小布发布了新的文献求助10
6秒前
李德胜完成签到,获得积分10
6秒前
刻苦莫言完成签到,获得积分10
6秒前
桐桐应助butterfly采纳,获得10
7秒前
杂兵甲发布了新的文献求助10
8秒前
8秒前
科目三应助潇洒依白采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
ss发布了新的文献求助10
9秒前
9秒前
陈夏萍发布了新的文献求助10
10秒前
Leohp发布了新的文献求助20
10秒前
10秒前
Jasper应助Pengcheng采纳,获得10
10秒前
10秒前
dianze完成签到,获得积分10
11秒前
12秒前
asedddd发布了新的文献求助10
13秒前
三星级读书完成签到,获得积分10
13秒前
Zx_1993应助牛钧研采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532287
求助须知:如何正确求助?哪些是违规求助? 4621035
关于积分的说明 14576445
捐赠科研通 4560926
什么是DOI,文献DOI怎么找? 2498991
邀请新用户注册赠送积分活动 1478963
关于科研通互助平台的介绍 1450218