亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Policy Iteration with Integer Programming for Inventory Management

计算机科学 数学优化 启发式 库存控制 水准点(测量) 强化学习 运筹学 人工智能 数学 大地测量学 地理
作者
Pavithra Harsha,Ashish Jagmohan,Jayant Kalagnanam,Brian Quanz,Divya Singhvi
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
被引量:2
标识
DOI:10.1287/msom.2022.0617
摘要

Problem definition: In this paper, we present a reinforcement learning (RL)-based framework for optimizing long-term discounted reward problems with large combinatorial action space and state dependent constraints. These characteristics are common to many operations management problems, for example, network inventory replenishment, where managers have to deal with uncertain demand, lost sales, and capacity constraints that results in more complex feasible action spaces. Our proposed programmable actor RL (PARL) uses a deep-policy iteration method that leverages neural networks to approximate the value function and combines it with mathematical programming and sample average approximation to solve the per-step-action optimally while accounting for combinatorial action spaces and state-dependent constraint sets. Methodology/results: We then show how the proposed methodology can be applied to complex inventory replenishment problems where analytical solutions are intractable. We also benchmark the proposed algorithm against state-of-the-art RL algorithms and commonly used replenishment heuristics and find that the proposed algorithm considerably outperforms existing methods by as much as 14.7% on average in various complex supply chain settings. Managerial implications: We find that this improvement in performance of PARL over benchmark algorithms can be directly attributed to better inventory cost management, especially in inventory constrained settings. Furthermore, in the simpler setting where optimal replenishment policy is tractable or known near optimal heuristics exist, we find that the RL-based policies can learn near optimal policies. Finally, to make RL algorithms more accessible for inventory management researchers, we also discuss the development of a modular Python library that can be used to test the performance of RL algorithms with various supply chain structures. This library can spur future research in developing practical and near-optimal algorithms for inventory management problems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0617 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼白容关注了科研通微信公众号
15秒前
wukong完成签到,获得积分10
19秒前
冷傲迎梅完成签到 ,获得积分10
19秒前
25秒前
满锅发布了新的文献求助10
32秒前
欢呼白容发布了新的文献求助10
52秒前
御龙万里完成签到 ,获得积分10
1分钟前
御龙万里发布了新的文献求助10
1分钟前
帅气书文完成签到,获得积分10
1分钟前
1分钟前
酷波er应助欢呼宛秋采纳,获得10
1分钟前
aaa发布了新的文献求助10
1分钟前
CipherSage应助苹果诗珊采纳,获得10
1分钟前
aaa完成签到,获得积分10
1分钟前
2分钟前
2分钟前
苹果诗珊发布了新的文献求助10
2分钟前
Cnak发布了新的文献求助10
2分钟前
matrixu完成签到,获得积分10
2分钟前
浮游应助甜甜亦丝采纳,获得10
2分钟前
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
harri完成签到,获得积分10
2分钟前
张书玉发布了新的文献求助10
2分钟前
张书玉完成签到,获得积分10
2分钟前
2分钟前
抚琴祛魅完成签到 ,获得积分10
2分钟前
wanci应助满锅采纳,获得10
3分钟前
行走完成签到,获得积分10
3分钟前
现实的俊驰完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
满锅发布了新的文献求助10
4分钟前
4分钟前
满锅完成签到,获得积分10
4分钟前
4分钟前
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
orixero应助科研通管家采纳,获得30
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077566
求助须知:如何正确求助?哪些是违规求助? 4296590
关于积分的说明 13387183
捐赠科研通 4119064
什么是DOI,文献DOI怎么找? 2255676
邀请新用户注册赠送积分活动 1260033
关于科研通互助平台的介绍 1193411