Chaos Optimization Algorithms: A Survey

计算机科学 混沌(操作系统) 元启发式 最优化问题 领域(数学) 工程优化 桥(图论) 人工智能 管理科学 数据科学 机器学习 数学优化 算法 数学 工程类 医学 内科学 计算机安全 纯数学
作者
Y. H. Zhang,Jingqi Lu,Chunliang Zhao,Zhong Li,Jun Yan
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
标识
DOI:10.1142/s0218127424502055
摘要

Chaos Optimization Algorithms (COAs) have emerged as a potent global optimization technique, exhibiting remarkable capabilities in tackling complex optimization challenges. In recent years, a plethora of COAs and their variants have been developed and employed to address a wide array of practical problems in engineering and science. Despite the proliferation of these algorithms, existing reviews often suffer from being outdated or lacking in robust classification criteria. This deficiency impedes the accurate assessment of the latest advancements and obstructs researchers’ ability to swiftly comprehend the current state of research in chaos optimization. To bridge this gap, this paper offers a review by classifying chaos optimization into five distinct categories: chaos map-based optimization algorithms, chaos metaheuristic optimization algorithms, chaos game optimization algorithms, hybrid optimization algorithms, and others. Each category is meticulously analyzed, with a thorough discussion of the inherent strengths and weaknesses of the respective algorithms. This analysis not only clarifies the unique features of each algorithm but also enhances understanding by contrasting their various applications. The review extends to the practical deployment of chaos algorithms across specific problems, illustrating their versatility and effectiveness. Conclusively, this paper delineates potential future research evolution of COAs, providing a clear and structured guide to forthcoming explorations in this dynamic field. This survey aims to empower researchers within the optimization community with a deeper and more comprehensive understanding of the landscape of COAs, paving the way for innovative research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phil发布了新的文献求助10
1秒前
2秒前
mm完成签到 ,获得积分10
3秒前
Ava应助333水采纳,获得10
4秒前
邓佳鑫Alan应助jxan采纳,获得10
5秒前
7秒前
充电宝应助lijun采纳,获得10
8秒前
nilu发布了新的文献求助10
8秒前
hannah发布了新的文献求助10
9秒前
Hello应助布丁仔采纳,获得10
9秒前
9秒前
稀里糊涂完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
cmy完成签到,获得积分10
12秒前
厚厚驳回了Lucas应助
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
柯一一应助科研通管家采纳,获得10
13秒前
神勇映雁应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
hvivi6发布了新的文献求助10
13秒前
星辰大海应助悦耳的秋采纳,获得10
13秒前
15秒前
高大绝义发布了新的文献求助10
16秒前
短腿小柯基完成签到 ,获得积分10
16秒前
Kannan发布了新的文献求助10
16秒前
syh发布了新的文献求助10
18秒前
君君完成签到,获得积分10
19秒前
布丁仔发布了新的文献求助10
21秒前
22秒前
orixero应助WN采纳,获得10
22秒前
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3923922
求助须知:如何正确求助?哪些是违规求助? 3468735
关于积分的说明 10953328
捐赠科研通 3198026
什么是DOI,文献DOI怎么找? 1766904
邀请新用户注册赠送积分活动 856590
科研通“疑难数据库(出版商)”最低求助积分说明 795518