Predicting On-Road Air Pollution Coupling Street View Images and Machine Learning: A Quantitative Analysis of the Optimal Strategy

空气污染 联轴节(管道) 污染 运输工程 环境科学 计算机科学 环境工程 人工智能 工程类 化学 机械工程 生态学 有机化学 生物
作者
Hui Zhong,Di Chen,Pengqin Wang,Wenrui Wang,Shaojie Shen,Yonghong Liu,Meixin Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
标识
DOI:10.1021/acs.est.4c08380
摘要

Integrating mobile monitoring data with street view images (SVIs) holds promise for predicting local air pollution. However, algorithms, sampling strategies, and image quality introduce extra errors due to a lack of reliable references that quantify their effects. To bridge this gap, we employed 314 taxis to monitor NO, NO2, PM2.5, and PM10, and extracted features from ∼382,000 SVIs at multiple angles (0°, 90°, 180°, 270°) and buffer radii (100-500 m). Additionally, three typical machine learning algorithms were compared with SVI-based land-used regression (LUR) model to explore their performances. Generally, machine learning methods outperform linear LUR, with the ranking: random forest > XGBoost > neural network > LUR. Averaging strategy is an effective method to avoid bias of insufficient feature capture. Therefore, the optimal sampling strategy is to integrating multiple viewing angles at a 100-m buffer, which achieved absolute errors mostly less than 2.5 μg/m3 or ppb. Besides, overexposure, blur, and underexposure led to image misjudgments and incorrect identifications, causing an overestimation of road features and underestimation of human-activity features. These findings enhance understanding and offer valuable support for developing image-based air quality models and other SVI-related research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LXhong给LXhong的求助进行了留言
刚刚
等光来完成签到,获得积分10
刚刚
916发布了新的文献求助10
1秒前
科目三应助真实的便当采纳,获得10
4秒前
怕黑明雪完成签到,获得积分10
4秒前
4秒前
6秒前
shatang完成签到,获得积分10
8秒前
8秒前
爆米花应助LiYJS采纳,获得10
9秒前
laodie完成签到,获得积分10
10秒前
lanping666完成签到,获得积分10
10秒前
萨尔莫斯发布了新的文献求助10
11秒前
研友_nVWP2Z发布了新的文献求助10
11秒前
12秒前
Saunak完成签到,获得积分10
14秒前
Cadre发布了新的文献求助10
15秒前
17秒前
Sean发布了新的文献求助10
18秒前
18秒前
19秒前
田様应助123321采纳,获得10
19秒前
20秒前
pe完成签到,获得积分10
21秒前
平淡小丸子完成签到 ,获得积分10
23秒前
CodeCraft应助猪猪采纳,获得10
23秒前
pe发布了新的文献求助10
24秒前
24秒前
24秒前
ohooo完成签到,获得积分20
24秒前
大鲸在游泳完成签到,获得积分10
25秒前
Cadre完成签到,获得积分10
26秒前
27秒前
ohooo发布了新的文献求助10
27秒前
木叶的秋发布了新的文献求助10
29秒前
30秒前
suzhenyue应助Oven采纳,获得10
31秒前
123321发布了新的文献求助10
32秒前
LaTeXer应助科研人员采纳,获得60
32秒前
Stroeve完成签到,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800680
求助须知:如何正确求助?哪些是违规求助? 3346007
关于积分的说明 10328247
捐赠科研通 3062514
什么是DOI,文献DOI怎么找? 1681009
邀请新用户注册赠送积分活动 807337
科研通“疑难数据库(出版商)”最低求助积分说明 763627