HeMDAP: Heterogeneous Graph Self-Supervised Learning for MiRNA-Disease Association Prediction

计算机科学 机器学习 图形 人工智能 理论计算机科学
作者
Yunjie Ma,Fei Wang,Feng Qian,Zuocheng Wang,Luyu Xie
标识
DOI:10.1109/tcbbio.2025.3536039
摘要

MiRNA-disease associations (MDAs) are particularly insightful for revealing the complex pathology of human diseases. Traditional experimental methods for MDA studies are costly, time-consuming, and low-throughput. Thus, many machine learning and deep learning-based methods have been proposed to predict MDAs. However, due to the limitations of supervised learning, these methods often fall short in predictive performance. To address this issue, we propose a novel MDA prediction method, HeMDAP, which is based on graph contrastive learning using meta-path view and network structure view of heterogeneous graph. The main innovation of HeMDAP lies in designing two complementary graph representations, network structure view and meta-path view, as well as introducing self-supervised contrastive learning and supervised contrastive learning to effectively optimize node embeddings. Additionally, we utilize knowledge-aware enhancement to further improve embedding quality. This multi-view learning and multi-task training strategy can more comprehensively capture the complex relationships among miRNAs, genes, and diseases. Experimental results on public datasets show that HeMDAP outperforms all existing methods in terms of prediction accuracy. In five-fold cross-validation, HeMDAP achieved an AUC of 94.92% and an AUPR of 95.07%. These results demonstrate the effectiveness and superiority of our proposed method in the MDA prediction task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赫若魔应助蓝色天空采纳,获得10
刚刚
正直画笔完成签到 ,获得积分10
2秒前
2秒前
其醉完成签到 ,获得积分10
4秒前
4秒前
吕玥函发布了新的文献求助10
5秒前
6秒前
7秒前
迷路的士晋完成签到,获得积分20
8秒前
9秒前
Lucas应助酷酷一笑采纳,获得10
11秒前
11秒前
jck发布了新的文献求助10
12秒前
12秒前
CipherSage应助吕玥函采纳,获得10
12秒前
鳗鱼夜阑发布了新的文献求助10
13秒前
lyian完成签到 ,获得积分10
13秒前
斯可发布了新的文献求助10
14秒前
springwyc应助幸福大白采纳,获得10
14秒前
14秒前
15秒前
Meyako应助橘子采纳,获得10
17秒前
刘珍荣完成签到,获得积分10
19秒前
20秒前
Meyako应助蓝色天空采纳,获得10
20秒前
20秒前
吴彦祖发布了新的文献求助10
20秒前
李健应助Yang采纳,获得10
21秒前
FashionBoy应助七七丫采纳,获得50
21秒前
Sue完成签到 ,获得积分10
21秒前
苗条爬梯人完成签到,获得积分10
22秒前
星辰大海应助奋斗土豆采纳,获得10
23秒前
curtisness应助巫千秋采纳,获得10
24秒前
25秒前
Nnn完成签到,获得积分10
26秒前
深情的幼南完成签到,获得积分10
28秒前
29秒前
曾经青亦完成签到,获得积分10
32秒前
32秒前
博修发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776924
求助须知:如何正确求助?哪些是违规求助? 4108511
关于积分的说明 12709414
捐赠科研通 3829981
什么是DOI,文献DOI怎么找? 2112741
邀请新用户注册赠送积分活动 1136544
关于科研通互助平台的介绍 1020367