接受者
材料科学
成核
有机太阳能电池
二聚体
离解(化学)
能量转换效率
纳米纤维
活动层
制作
化学工程
化学物理
纳米技术
聚合物
图层(电子)
光电子学
物理化学
复合材料
化学
有机化学
物理
工程类
凝聚态物理
医学
薄膜晶体管
替代医学
病理
作者
Y. Andrew Wang,Jianqi Zhang,Chenyang Tian,Hao Zhang,Tong Wang,Caixuan Wang,Mengying Wu,Hongbo Bi,Dandan Zhang,Guanghao Lu,Wei Liu,Zhixiang Wei
出处
期刊:Small
[Wiley]
日期:2025-02-09
标识
DOI:10.1002/smll.202411698
摘要
Giant Dimer (G-Dimer) acceptors have shown their promising ability in the fabrication of high-performance organic solar cells; however, a lack of investigation on the morphology optimization of donor and acceptor (D-A) blends essentially confines their potential application. Based on a typical Y6-analogues-based giant dimeric acceptor G-DimerC8C10, this study investigated the impact of varying processing temperatures on the behavior of the blends with donor PM6. The result indicated that as the processing temperature increased, the aggregation capacity of the donor is enhanced. This enhancement can be attributed to the reduced nucleation sites and the accelerated diffusion rate of PM6, which consequently resulted in forming nanofiber with larger diameters. Concurrently, the vertical phase distribution of the active layer is observed, with progressively ascended donor and descended acceptor due to the disparate drying times of the donor and the acceptor. The synergistic regulated vertical phase distribution and nanofiber morphology resulted in an optimized dissociation rate of excitons and an enhanced hole transport rate. Especially, the 1 cm2 flexible device fabricated by slot-die coating achieves a record power conversion efficiency (PCE) of 14.38% at the optimized processing temperature (90 °C), which paved the way for future upscaling applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI