Determinants of Generative AI in Promoting Green Purchasing Behavior: A Hybrid Partial Least Squares–Artificial Neural Network Approach

偏最小二乘回归 人工神经网络 人工智能 生成语法 采购 计算机科学 机器学习 数学 业务 营销
作者
Behzad Foroughi,Bita Naghmeh‐Abbaspour,Jun Wen,Morteza Ghobakhloo,Mostafa Al‐Emran,Mohammed A. Al‐Sharafi
出处
期刊:Business Strategy and The Environment [Wiley]
被引量:2
标识
DOI:10.1002/bse.4186
摘要

ABSTRACT In the era of rapid technological advancement, generative artificial intelligence (AI) has emerged as a transformative force in various sectors, including environmental sustainability. This research investigates the factors and consequences of using generative AI to access environmental information and influence green purchasing behavior. It integrates theories such as the information adoption model, value–belief–norm theory, elaboration likelihood model, and cognitive dissonance theory to pinpoint and prioritize determinants of generative AI usage for environmental information and green purchasing behavior. Data from 467 participants were analyzed using a hybrid methodology that blends partial least squares (PLS) with artificial neural networks (ANN). The PLS outcomes indicate that interactivity, responsiveness, knowledge acquisition and application, environmental concern, and ascription of responsibility are key predictors of generative AI use for environmental information. Furthermore, environmental concerns, green values, personal norms, ascription of responsibility, individual impact, and generative AI use emerge as predictors of green purchasing behavior. The ANN analysis offers a unique perspective and discloses variations in the hierarchy of these predictors. This research provides valuable insights for stakeholders on harnessing generative AI to promote sustainable consumer behaviors and environmental sustainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
无水乙醚完成签到,获得积分10
3秒前
科研汪完成签到,获得积分10
5秒前
liufan完成签到 ,获得积分10
6秒前
6秒前
天真的青发布了新的文献求助10
8秒前
8秒前
李_小_八完成签到,获得积分10
8秒前
9秒前
疼小钱应助guojingjing采纳,获得10
10秒前
疼小钱应助guojingjing采纳,获得10
10秒前
10秒前
小丸子发布了新的文献求助30
10秒前
asdfks发布了新的文献求助10
13秒前
dzglsb发布了新的文献求助30
16秒前
星梦发布了新的文献求助10
17秒前
GuSiwen完成签到,获得积分10
19秒前
20秒前
守暖完成签到 ,获得积分10
20秒前
21秒前
pluto应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
HEAUBOOK应助科研通管家采纳,获得10
22秒前
Jasper应助星梦采纳,获得10
22秒前
上官若男应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
pluto应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
pluto应助科研通管家采纳,获得10
23秒前
深情安青应助程程采纳,获得10
23秒前
24秒前
Daniel发布了新的文献求助10
25秒前
27秒前
长街发布了新的文献求助20
28秒前
31秒前
科研通AI5应助Bubble采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783844
求助须知:如何正确求助?哪些是违规求助? 3329096
关于积分的说明 10239905
捐赠科研通 3044513
什么是DOI,文献DOI怎么找? 1671069
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192