Screening of Anti-Hair Loss Plant Raw Materials Based on Reverse Network Pharmacology and Experimental Validation

丹参 Wnt信号通路 传统医学 药用植物 脱发 化学 生物 信号转导 药理学 植物 细胞生物学 医学 中医药 替代医学 遗传学 病理
作者
Jiajia Xu,Congfen He,Rui Tian
出处
期刊:Current Issues in Molecular Biology [MDPI AG]
卷期号:47 (1): 68-68 被引量:3
标识
DOI:10.3390/cimb47010068
摘要

Hair loss is one of the skin conditions that can affect people’s mental health. Plant raw material extracts are of great interest due to their safety. In this study, we utilize reverse network pharmacology to screen for key targets of the Wnt/β-catenin signaling pathway and the TGFβ/BMP signaling pathway, as well as key differential lipids, for plant raw materials selection. The aim is to identify plant raw materials that may have anti-hair loss properties and to validate these findings through cell experiments. Licorice, salvia miltiorrhiza, mulberry leaf, ephedra and curcumae radix were found that may possess anti-hair loss effects. Licorice water extract (LWE), salvia miltiorrhiza water extract (SMWE), mulberry leaf water extract (MLWE), ephedra water extract (EWE) and curcumae radix water extract (CRWE) did not exhibit cytotoxicity on human dermal papilla cells (HDPCs). Through ALP staining, it was found that the expression of ALP in HDPCs treated with LWE, SMWE, MLWE, EWE and CRWE was enhanced. In addition, LWE, SMWE, MLWE, EWE and CRWE have reduced the expression of hair growth inhibitory factor TGF-β1 and inflammatory factor IL-6. Additionally, various water extracts can enhance the secretion of VEGF, with high concentrations of SMWE, EWE and CRWE exhibiting better efficacy. Furthermore, β-catenin, a key factor of the Wnt/β-catenin signaling pathway, was enhanced by LWE, SMWE, MLWE, EWE and CRWE treatment in cultured HDPCs. In conclusion, all five plant raw materials showed some anti-hair loss potential, providing theoretical support for their application in anti-hair loss products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万松辉发布了新的文献求助10
刚刚
端庄的紫完成签到,获得积分10
1秒前
明芬发布了新的文献求助10
1秒前
0_o完成签到,获得积分10
1秒前
shanage发布了新的文献求助10
1秒前
shanage发布了新的文献求助10
1秒前
shanage发布了新的文献求助10
1秒前
shanage发布了新的文献求助10
1秒前
2秒前
一花一叶一春木完成签到,获得积分20
2秒前
专注汲完成签到,获得积分10
2秒前
lelelelelelele完成签到,获得积分10
3秒前
3秒前
3秒前
酷波er应助猪猪猪采纳,获得30
4秒前
万能的土豆完成签到,获得积分10
4秒前
小young完成签到 ,获得积分0
4秒前
4秒前
藤藤菜完成签到,获得积分10
4秒前
Brain完成签到,获得积分20
4秒前
5秒前
lalala完成签到,获得积分10
5秒前
端庄的紫发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
大气雨灵完成签到 ,获得积分10
5秒前
6秒前
6秒前
tong童发布了新的文献求助10
6秒前
不吃海苔完成签到,获得积分10
6秒前
粗暴的坤发布了新的文献求助10
7秒前
cccc发布了新的文献求助20
7秒前
传奇3应助zjl采纳,获得10
7秒前
7秒前
zhaoxi发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
Xuan发布了新的文献求助10
9秒前
MOMO发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742