光激发
光致发光
脱质子化
质子化
猝灭(荧光)
化学
发光
光化学
激发态
碱度
基态
化学物理
材料科学
荧光
物理化学
有机化学
离子
光电子学
原子物理学
物理
量子力学
作者
Yujie Zhou,Chunyin Ye,Jia‐Chen Zhang,Shenlong Jiang,Qun Zhang
摘要
We present a mechanistic study of pH-sensitive photoluminescence (PL) in two deliberately designed systems of carbon dots (CDs), which are relatively poor and rich in carboxyl groups anchored on their surfaces, denoted CDs-COOH(p) and CDs-COOH(r), respectively. The underlying PL mechanisms for the two contrasting CD systems are revealed to be different. As for CDs-COOH(p), the pH response of PL exhibits an asymmetric volcano-shaped pattern featuring dynamic and static quenching under acidic and alkaline conditions, dominated by the effects of hydrogen bonding and non-emissive ground-state complex, respectively. As for CDs-COOH(r), however, the pH response exhibits an interesting sigmoid-shaped pattern featuring PL quenching under acidic conditions but PL enhancement under alkaline conditions, both of which become more pronounced with increasing photoexcitation energy, exhibiting a nearly symmetric trumpet-shaped pattern. Such patterns of PL response to acidity/alkalinity and photoexcitation energy can be understood in terms of the prominent effect of excited-state proton transfer that is coupled to the surface emissive centers of the carboxyl group and can be effectively modulated via pH-regulated protonation/deprotonation. Our comparative analyses of the pH-regulated surface-sensitive PL quenching/enhancement behaviors in the two CD systems allow for elucidating the different surface-state-controlled PL mechanisms, highlighting the specific role of carboxyl groups in the pH-sensitive PL of CDs. The mechanistic insights gleaned from this work would be useful for CDs-based applications such as luminescence, sensing, and bioimaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI