Using Natural Language Processing to Explore Patient Perspectives on AI Avatars in Support Materials for Patients With Breast Cancer: Survey Study

计算机科学 乳腺癌 情绪分析 阿凡达 人工智能 自然语言处理 心理学 医学 癌症 人机交互 内科学
作者
Eleanor Cheese,Raouef Ahmed Bichoo,K. Grover,Dorin Dumitru,Alexandros Zenonos,Joanne Groark,D.F. Gibson,Rebecca Pope
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e70971-e70971
标识
DOI:10.2196/70971
摘要

Background Having well-informed patients is crucial to enhancing patient satisfaction, quality of life, and health outcomes, which in turn optimizes health care use. Traditional methods of delivering information, such as booklets and leaflets, are often ineffective and can overwhelm patients. Educational videos represent a promising alternative; however, their production typically requires significant time and financial resources. Video production using generative artificial intelligence (AI) technology may provide a solution to this problem. Objective This study aimed to use natural language processing (NLP) to understand free-text patient feedback on 1 of 7 AI-generated patient educational videos created in collaboration with Roche UK and the Hull University Teaching Hospitals NHS Trust breast cancer team, titled “Breast Cancer Follow Up Programme.” Methods A survey was sent to 400 patients who had completed the breast cancer treatment pathway, and 98 (24.5%) free-text responses were received for the question “Any comments or suggestions to improve its [the video’s] contents?” We applied and evaluated different NLP machine learning techniques to draw insights from these unstructured data, namely sentiment analysis, topic modeling, summarization, and term frequency–inverse document frequency word clouds. Results Sentiment analysis showed that 81% (79/98) of the responses were positive or neutral, while negative comments were predominantly related to the AI avatar. Topic modeling using BERTopic with k-means clustering was found to be the most effective model and identified 4 key topics: the breast cancer treatment pathway, video content, the digital avatar or narrator, and short responses with little or no content. The term frequency–inverse document frequency word clouds indicated positive sentiment about the treatment pathway (eg, “reassured” and “faultless”) and video content (eg, “informative” and “clear”), whereas the AI avatar was often described negatively (eg, “impersonal”). Summarization using the text-to-text transfer transformer model effectively created summaries of the responses by topic. Conclusions This study demonstrates the success of NLP techniques in efficiently generating insights into patient feedback related to generative AI educational content. Combining NLP methods resulted in clear visuals and insights, enhancing the understanding of patient feedback. Analysis of free-text responses provided clinicians at Hull University Teaching Hospitals NHS Trust with deeper insights than those obtained from quantitative Likert scale responses alone. Importantly, the results validate the use of generative AI in creating patient educational videos, highlighting its potential to address the challenges of costly video production and the limitations of traditional, often overwhelming educational leaflets. Despite the positive overall feedback, negative comments focused on the technical aspects of the AI avatar, indicating areas for improvement. We advocate that patients who receive AI avatar explanations are counseled that this technology is intended to supplement, not replace, human health care interactions. Future investigations are needed to confirm the ongoing effectiveness of these educational tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脱壳金蝉完成签到,获得积分10
刚刚
maomao1986完成签到,获得积分10
1秒前
2秒前
111完成签到 ,获得积分10
2秒前
李琛完成签到,获得积分10
2秒前
孤独剑完成签到 ,获得积分10
3秒前
深情安青应助oneovers采纳,获得10
3秒前
无糖加冰完成签到,获得积分10
4秒前
CyberHamster完成签到,获得积分0
5秒前
congconglyu发布了新的文献求助30
5秒前
cistronic发布了新的文献求助20
5秒前
来杯乌龙茶完成签到,获得积分10
5秒前
hahaha完成签到,获得积分10
6秒前
科研人完成签到,获得积分10
6秒前
Dsunflower完成签到 ,获得积分10
6秒前
jixiekaifa完成签到,获得积分10
7秒前
Monkey_Z完成签到,获得积分10
7秒前
8秒前
bhc186完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
MaYi完成签到,获得积分10
12秒前
怕孤单的绿竹完成签到 ,获得积分10
12秒前
莫愁一舞完成签到,获得积分10
13秒前
Kiki完成签到 ,获得积分10
13秒前
小幸运完成签到,获得积分10
15秒前
束玲玲完成签到,获得积分10
16秒前
杨玲完成签到 ,获得积分10
17秒前
qqqdewq完成签到,获得积分10
18秒前
彗星入梦完成签到 ,获得积分10
19秒前
zeannezg完成签到 ,获得积分10
19秒前
Hayat应助wawa采纳,获得30
20秒前
ljf完成签到,获得积分10
20秒前
20秒前
刘较瘦完成签到,获得积分10
21秒前
执着的忆雪完成签到,获得积分10
21秒前
Bethune124完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
chenhongyan完成签到 ,获得积分10
23秒前
草木发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612102
求助须知:如何正确求助?哪些是违规求助? 4696279
关于积分的说明 14890898
捐赠科研通 4732037
什么是DOI,文献DOI怎么找? 2546198
邀请新用户注册赠送积分活动 1510470
关于科研通互助平台的介绍 1473371